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The article consider using splines to develop a mathematical model of details shaping surfaces
in the cutting process on CNC machines. As a result of workload simulations and obtaining data about
technological system pliability, expected processing errors are determined, which can be considered
at preparation stage of the control program.
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B cmammi posenanymuii eapianm suxopucmants cHAQUHIe 07151 n00Y008U MAMeMAMuiHoi Mo-
deni hopmoymeopents nogepxoHv demaleli npu obpooyi pizanuam wa eéepcmamax 3 YI1K. 3a pe3zyno-
mamamu iMimayii poooyuux HAGAHMANCEHb | OMPUMAHHA OAHUX NPO NOOAMIUBICIb MEXHONO2IYHOL
cucmemu GU3HAYAIOMbCA OUIKYB8AHI NOXUOKU 0OPOOKU, AKI MOXICYMb Oymu ypaxoeaui Ha cmadii nio-
20MOBKU Kepylouoi npocpamu.

Knwowuogi cnosa: mamemamuuna mooenv, NOASAPHI CRAAUHU; CUCTEMA PIGHAHL, MOOEI08AHHS
NOBEPXHI.

Problem’s Formulation

A characteristic feature of CNC machines is the performing of all the main and auxiliary
movements of the working parts according to pre-prepared program on the set distance. If such
movements are carried out by the form-building tool, the corresponding sizes on a detail surface turn
out. Many factors prevent accurate shaping, even when accurately recording movements in the control
program. For example, the elastic and thermal deformations of the CNC machine technological system
elements, actually present during metalworking, and each machine has its own “individual” characte-
ristics. As a rule, in order to establish the laws governing the formation of possible size deviations dur-
ing processing, it is necessary to carry out many tests of each CNC machine, which is very difficult in
the production environment.

In this regard, there is a need to create a reliable model of the behavior of the machine in a real
technological process to predict the accuracy and quality of processing.

To create a mathematical model, for example, a metalworking process on CNC machines with
a high degree of reliability, it is necessary to conduct a variety of tests simulating real processes,
which can be carried out using special devices [1, 2]. For contour milling, the scheme of simulation
actions on a forming tool, for example, an end mill, is shown in figure 1, where radiuses 74,13, ... — the
deviation values of the center of the tool under the influence of simulation efforts, enclosed at an angle
Any, An, ... . For a specific simulation effort applied to the tool at various angles, we obtain a radial
diagram.

The objective of the research is to establish, with the help of a mathematical model of the flex-
ibility of the CNC machine, the probable deviations of the tool from the programmed value in the en-
tire range of workloads and the directions of their action. And, creation of the model is carried out ac-
cording to limited experimental research for a particular machine. This approach significantly reduces
the complexity of testing and allows you to analyze the processes of formation of processing errors.

The results obtained are based on a completely constructive hypothesis that, within the frame-
work of the machine's operating modes, the processing accuracy changes continuously.

Let's pass to formalization of a task.
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Let the values received at some duty of the machine be described by a curve = r(11) , set by
points of the measurements received as a result of carrying out an experiment (1;,7;) (i =0,1,...,n ),
at that

0=1 <1y <1z..<u, <2p
and

=0 (i=01,..,n), =1
and

Ay =1 -1y (=12,..,n)

Fig. 1. Diagram of the formation of deviations of the position of the tool under the action of
simulation efforts at various angles

Further we will consider a case when
I; =%l (i=0,1,..m2n)

and we assume that for all i€z
=1+ 2n

First, we introduce some notation needed later on.

Analysis of recent research and publications
Splines on a uniform grid

Splines are called piecewise polynomial functions with a homogeneous structure [3, 4, 5]. The
most common and historically earliest example of a spline is a broken line. Splines have a number of
great features that have made them successful in a variety of applications. So, in comparison with the
classical apparatus of approximation of functions, splines have better approximative properties.

Spline of minimum defect of an order r by given partition

Ah = {ih}ooi = —coAh = {ih}
called r — 1 times continuously differentiable function sr(t), which at each interval (ih, (i + 1)h)
(i =0,%1,+2,...) is a polynomial of degree not higher rr.

Note that on the set of splines of order r ( = 0) there is a spline identically equal to zero and
a spline identically equal to one.

From here and from the fact that the work of a polynomial of degree of r on number 6 is a po-
lynomial of the same degree if 6 # 0 and the identity zero for 6 = 0, as well as the fact that the sum of
polynomials of degreen <m <r wum < rm < r is a polynomial of degree no higher than r, we see
that the set of all splines of degree » over the partition Ah is a linear space.

So if Sr(Ah) the set of all splines of the minimal defect by partition Ah , and

yri € S;(AR) i =0,%1,%2,..,
then a linear combination of functions y,; will also lie in the set S,.(Ah), i.e.

Y iCiiyy; € Sy(8h). (1)
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B-splines
B-spline represents a spline with the minimum carrier for the fixed degree of a spline and an
order of smoothness. The value of B-splines consists that any spline of the given degree and smooth-
ness can be written down in the form of the linear combination of the corresponding B-splines. That is,
the B-spline represents "brick" by means of which it is possible to construct a spline with the given
properties [3, 4, 5]. Parabolic B-spline is as follows

o3 (el 3)

2

By p(t) =4 0.75 = 025(%) ( [ )
2

ois(s 2 (re 2.4

\ 0 (|t| =3h/ 2)
and function graph B, ; (t) has the form

2 -1 1 2
Fig. 2. View of the second-order B-spline

and, accordingly, the parabolic spline of the minimal defect in the partition A, can be written as
Son(8) = X2 €iBa p(t — (20 — 1h/2). (2)
It is clear, that for any numbers ## narrowing splines (2) per segment [0, T] (where T = nh)
there is a spline, in addition, for any particular t € (ih, (i_1)/h) representation (2) uses only three
terms. This allows you to write splines (2) as

Son(t) = T2 10 €iBon (t — 20 — DR/2). 3)
And for t € (ih, (i + 1)/h)
i+11t6Ci+Ci— i+1—Ci—1 /= . i+1—2Ci+Ci—1 ,. .
Sy (t) = SHEEIEEEL  SSEL (j — ) 4 SRR (- ih)2, )
Let's consider the splines further called — the polar splines offered in work [5]
1
C2 (T, ]-O = 1221 (Ti - EAZri) BZ,p/n(u - ui)- (5)

As already noted, for each value of i, only three terms in (5) are nonzero. More precisely, if
i€ [(i—0,5p/n (i+0,5p/n], o

1 1
c(r,m) = (Ti—1 - gAZTiJ) By pm(—1;_q) + (Ti - §A27‘i> By pymn (1 — 1) +

1
+ (Ti+1 - §A27‘i+1) By p/m (L — jyq).
Besides, in work [5], it is shown that for all whole i equalities are carried out
1
c(r, ) =7 — A,
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So splines ¢, (r, 1) almost interpolated (accurate to O(A*r;) ) input data (u;,7;) (i € Z). This
causes many spline properties c, (7, ). For example, if 7 (1) - three times continuously differentiable
2p - periodic function, then

p

7 3
Ir =™l <5¢(5) M@l

Besides,
1 3
I - e < = (2) @],
rae ||fllc=max.|f (®)].

Such results are called a priori or guaranteed accurate estimates for the recovery of smooth
curves. They show that splines restore with high accuracy not only the smooth curves themselves, but
also their derivatives. From this it is easy to derive asymptotic estimates of the errors in the reconstruc-
tion of smooth curves by polar splines.

Let the (1) there is three times a periodic function, continuously differentiable on all axis 2p.

Then for 1 € [@, i+ O,S)p/n] npu n — oo uniformly across 11 and on i ratios are carried out
3
() - cp(r,w) = - (2) (1= $H)pr@ () + 0(n ),
VN _ 1 (P\ 1y an2vn(3) _3
'@ - ¢ == (2) (1302 + 0(n~3),
where 7 = (11— 11;)/(p/n).

Thus, using the obtained polar almost interpolation spline, it is possible to within 0 (n~3) get
any intermediate value of the machine operating mode.

Our further discussion is devoted to the study of those values for which there are no experi-
mental data.

The idea of the proposed design is as follows. We have a data set (radial diagrams) for each
experiment. For each set, we construct, using the proposed method, a polar spline. A lot of polar
splines are “frames”, on which we pull the surface, which, in fact, represents all the possible modes of
the CNC machine, lying in the framework of the experiments. To construct this surface, we will use
the tensor product of second-order splines — biquadratic splines.

Tensor product of spaces

Let U- linear space of functions defined on some set X with values in the domain of real
numbers and V - linear space of functions defined on some set Y with values in the space R. P
For any functions u € U u v € V ratio

w(x,y) = u(x)v(y)
For all (o0,y) € X4Y defines a function on a plane XYY, which is called the tensor product of func-
tions u and v and is indicated u ® v.
The set of all finite linear combinations of functions on the plane X4Y shape u ® v called ten-

sor product U and " and is designated ® V . In this way
n

U®V =

zci(ui(@vi):ci ERu eU,veV,i=1,..,n
i=1
and U®V is a linear space defined on a plane X X Y.

Let U = Py — space of algebraic polynomials of order N defined on the axis of real numbers
X =R u U = P, — space of algebraic polynomials of order M on = R . Then U®V this is the linear
space Py y, whose elements are polynomials of two variables, of degree not higher than N in the first
variable and not higher than M in the second, whose domain is the plane X4Y = R? .

Presenting main material
Main result

Consider the surface description by the tensor product of B-splines defined on a square lattice

ih = (ih, jh) , where i € Z2.
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The biquadratic spline of the minimal defect s with nodes at points (ih, jh) is called interpola-
tion for functions f'with bounded values f; +Liv1)a in points ((i + 1/2)h, (j + 1/2)h) , if
>

Sipljpr =0

27 "2
Surface S, s(u), described by the tensor product of B-splines has the form
Sr,s(Pr u) = ZiEZ2 PiNr,s(u - i/h),

fi+%,j+% -

where u = (u,v) € R? and
Ny s(u —ih) = B,(u — ih)Bs(v — jh)
normalized tensor product of B-splines of order rs with a lattice with nodes
i = (i,)).

Consider biquadratic splines S, , (P, u). Function graph N, ,(u) looks as follows

Fig. 3. View of the biquadratic spline S, ,(P,u)

Using the type of parabolic B-spline, for u € [ih, jhR]Y[(i + 1)k, (j + 1)h] get

u—ih u — ih\? v—jh (U_jh>2
. 142857 -2 (t) 142 -2
SZ'Z(P,u) = Z PiNZ,Z(u - lh) = Pi'j 2 . 2 +
i€z? 5 5
p (1-57) R R o, p () R R
TP > . > TP . ] >
—i AN v—jh
1424 Lh_z(u lh) (1_ h])
+P,; h h /. +
b 2 2
% (1_v—jh)2 u— ihy? (1_v—jh)2
(-5 h () h
+Pi_1j-1 : +Piyyj1 : +
T 2 2 2 2 l ,;_ 22 2 2 2
1+2u_@h—2 u—ih v—jh 1_u—_ih v—jh u—ih v—jh
pp S O e,
In matrix form, it will have the following form:
1
u—ih (u—ih\? [ ﬂ ]
S;2(P,u) = [1 h ( h ) ] My, P, M2T,2| h N

v—jh
(57 )
where M,, — matrix size 3 X 3
11 1 0
M;, = > [—2 2 0]

1 -2 1
and

Pi_1j 1 Pijq1 Pipqja
Py, =| Pi—yj P;; Piyyj
Pi_1jr1 Pijy1 Pip1j
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From here we immediately get the values at the point ((l + l) h, (j + l) h):
Sz,z(P,ih)— PU+ (Pl]+1+Pl] 1+ Piyqj +Pi 1])+ (Pl 1j+1 T Pi—1j1 + Piyqje1 +

1
Pii1j-1) =Pij——AP;; , ©)
where
AP;; =28P;; — 6(P;js1+Pij+Pir1j+Piyj)— (Piyyjrr + Piyrjo1 +Pisgja + Pigji1)
Let the surface f be given by the points

fiv12 = f((i + %) h, (j + %) h>, (,j=01+1,%2,..)

and
= PHD ~F1 g0t = teS it et = 55 (Pt a1+ Fs a4 F ) -
1
_£<fi—§,j+3/z + fi—%,j—l/z + fi+§,j—1/2 + fi+§,j+3/z)’ (7)
The corresponding spline is denoted by
S%,z (P, u) = Yiez2 P%Nz,z (u —ih). (8)
when

.1 1
S32 (£.(1+3) ) = fiu2 + poae 0¥ ivase:
If the function f(u) has all continuous derivatives up to fourth order inclusive, then there ex-
ists a point uy € [ih, jh]4[(i + 1)h, (j + 1)h] such that

4 4 4
(1o D0 e 2 (e +2) o
In work [6] it is shown that if f(x,y) € C®(R?), what
fii— Sy = (2 42 >+0(h6),h—>0. (10)
’ ¢ 128 \ 9x* (ih,jR) ay* (ih,jh)

That is, the spline 521_2 asymptotically coincides with the interpolation biquadratic spline S.

We examined biquadratic splines defined on the entire plane R?. Let Q=[0, Hh]4[0, Wh] rec-
tangle with square step grid 4.

Then, to obtain an interpolation biquadratic spline, it is necessary to solve a system of HUW
linear equations. From relations (9) u (10) it is clear, that splines S} , asymptotically coincide with
interpolation and without significant loss of accuracy, instead of interpolation splines, we can use
splines 53, .

Fig. 4. Spline-surface, simulating these CNC machine operating modes
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Conclusions
Using the obtained simulation results at the stage of preparing control programs for CNC ma-
chines allows you to compare possible processing options to determine the most efficient. Modeling of
processes is possible when using CAM systems using on PC with average productivity.
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MOBYJIOBA MOJEJI TOJATJUBOCTI TEXHOJIOTTYHOI CHCTEMHA
BEPCTATA 3 UIIK
Hlymeiiko A.A., Koporkos B.C.

Pedepar

IIpu BuroroBmeHHi netaneid Ha Bepcrarax 3 UIIK BuHWKarOTH TpyxkHI dedopmarii
TEXHOJIOT1YHOI CHCTEMH, SIKi BIUIMBAIOTh HA TOYHICTH 00poOKH. BennunHa moxubOok, mo BUHUKAIOThH
IpU LbOMY, 3QJICKUTH BiJl peKUMIB OOPOOKH i TEXHIYHOTO CTAaHy TEXHOJIOTIYHOI CHCTEMH BepcTara.
BuzHaueHHS MOXKIIMBHUX BiIXWJICHB PO3MIPIB BiJl [Iii CHJI pi3aHHS CTBOPIOE MOKJIMBICTH BHOCHUTH B Ke-
pyrouy nporpamy o0poOKH KOPEKIIii [Tl KOMITEHCallii TOXUOOK.

MerToro poOOTH € CTBOPEHHSI METOAMKH PO3PAaXyHKY OUYIKYBaHUX MOXHOOK pyXy (OPMOYTBO-
protodoro iHcTpyMeHTy Ha BepcraTax 3 UIIK mpu aii cun pizaHHs y BCbOMY Jiama3oHi poOOYnX HaBa-
HTa)KEHb.

st JOCSTHEHHS MOCTABICHOI METH HEOOXiIHO CTBOPUTH MaTeMaTHYHY MOJEINb mpoiecy ¢o-
pMOyTBOpeHHS mpHu 00podui Ha Bepcratax 3 UIIK, sika mo3Bosse orpumaru HeoOXimHy iHpOpMaIliro
JUTSI TOYHOTO PO3PaxyHKY TPAEKTOPil pyXy IHCTPYMEHTIB IPH 33JaHUX peKUMax 0OpOOKH.

st 3niCHEHHS] TPOTHO3Y TOYHOCTI 0OpOOKM MpH BUKOPHCTaHHI CIUIAHIB 3alpOIIOHOBAaHA
MaTeMaTH4Ha MoJelb GopMyBaHHS po3MipiB AeTanei mpu oOpoOui pizaHHSIM. 3a pe3ylbTaTaMH iMi-
Tarii pobounx HaBaHTaxeHb Ha BepcTaTi 3 UIIK 1 oTpuMaHHs aHWX PO MOJATINBICTh TEXHOJIOTIYHOT
CHCTEMH MPOBOJUTHCS MOJICTIOBAHHS 0OPOOKH 3 BU3HAYEHHSIM BEJIMYMHU OYiKYBaHUX TIOXHOOK.
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BuKOpUCTaHHS OTPUMAHUX PE3yJbTaTiB MOJEIIOBAHHS HA €Tall MirOTOBKU KEPYHOUHX MpO-
rpam mis BeperaTiB 3 UITY 103BoJIs€ TOPIBHIOBATH MOKIIMBI BapiaHTH MPOIeCy OOPOOKH 1 BU3HAYATH
Oinbin epekTUBHUA. MOJICIOBaHHSI TIPOIECIB MOXKIMBO NIPYU BUKOPUCTaHHI CUCTEM aBTOMAaTHU30BaHO-
r'O MPOSKTYBAHHS 3 KOMIT'IOTEPaMHU CEPEAHBOT TPOTYKTUBHOCTI.

B yMoBax peaslbHOTO BHPOOHHUIITBA 3aCTOCYBaHHS PO3POOJICHUX METOIIB i MOJENEH T03BO-
JIUTh TIJABUIIUTH TOYHICTH 00poOKkK Ha BepcraTax 3 UIIK i migBUIuTH €(heKTUBHICTH BUPOOHUIITBA B
oMYy,
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