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MATHEMATICAL MODELING OF THE PROCESS OF HEATING
A COMPOSITE CONSTRUCTION BY INFRARED RADIATION

In order to clarify the polymerization mode of a carbon fiber cylinder, mathematical modeling
of the process of heating a composite structure (cylinder) by infrared radiation using the finite
difference method was carried out. Using mathematical modeling, it was found that under given
polymerization conditions, when exposed to infrared heating, the carbon fiber cylinder will reach a
cured state within 120 minutes. The calculation data are confirmed by an analysis of the degree of
polymerization of a carbon fiber fragment cut from a cylinder, cured by infrared heating. The degree
of polymerization of carbon fiber using infrared radiation during curing is 95—96 %.

Key words: carbon fiber, cylinder, infrared heating; finite difference method,; degree of poly-
merization.

B pobomi, 3 memoro ymounenns pexcumy nonimepusayii 6yeneniacmuxo8o2o yuinopy, npo-
B00UNOCS MAmMeMamuyne MOOeI08aHHs NPOYecy HASPiBaAHHA KOMNOZUMHOI KOHCMPYKYii (yuninopa)
iH(hpauepsoHUM BUNPOMIHIOBAHHAM NPU GUKOPUCHAHHI MemOoOdy KiHYyegux pisHuyb. 3a 0onomoeoro
MaAmMemMamuiHo20 MOOeIOBAHHSA 6CIMAHOBIEHO, WO NPU 3A0AHUX PeNCUMAX NOTIMepu3ayii npu enauGi
iH(hpauep8oHo20 GUNPOMIHIOBANHS HASPIBAHHA BY2NeNIACTMUKOSUlE Yyurinop npomseom 120 xeumun
docsiene CmaHy noeHoi noaimepizayii. J{ami po3paxyHKy niomeepoiceni anaiizom CHyneHs noiimepu-
3ayii hpacmenmy 8y2nAenIACMuKa, SUPI3AHO20 I3 YUTHOPY, WO Nid0asaiu 6NIUGY IHOPAUEPEOHOZO
BUNPOMIHIOBANHS. SHAUEHHS CHIYNEHIO NONIMepu3ayii 6yeneniacmuxa npu UKOpUcmanHi ingppauepeo-
HO20 UNPOMIHIOBAHHS cmanosums 95—96 %.

Knrouoei cnosa: eéyeneniacmuk; yuiinop, iHhpauepsorull Hazpie;, Memoo KiHYegux pisHuyb,
CMYniHb noaimepuzayii.

Problem’s Formulation

The existing production needs of the modern market impose ever-increasing demands on the
characteristics of modern materials in order to expand their field of application in more severe and
extreme conditions while at the same time searching for cost-effective production processes for pro-
ducing finished products [1].

Analysis of recent research and publications

In aerospace engineering, polymer composite materials (PCM) based on carbon fibers are
widely used. The unique properties of composite fiber materials with carbon fibers are determined
primarily by the high mechanical properties of the fibers themselves [2]. The tensile strength of fillers
— continuous single carbon fibers of the T800 type, according to the quality certificate, is about 5000
6000 MPa, and the epoxy matrix-binder is 70—90 MPa. Thus, the theoretical (calculated) carbon fiber

tensile strength is G;Op = 3871 MPa. However, in practice, this value is at the level G ;pm = 1800—

2500 MPa, which is 45 55% of G;Op .

Of great interest is the solution to the problems of increasing the strength of carbon plastics.
These include:

— incomplete implementation of the strength properties of the carbon filler in the composition
of carbon fiber;
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— the effect of the matrix on the strength of carbon fiber;

— coupling mechanism of the matrix and the filler.

Currently, research in the field of curing of dielectric materials, in particular binders in com-
posites, using IR heating is very relevant [3].

It is known that the technological mode of manufacture is affected by the characteristics of the
composite [4]. Traditionally, carbon fiber products are obtained by winding or laying on a forming
mandrel with subsequent polymerization in special furnaces. Such methods are multistage, laborious
and require high energy costs. There is a need for alternative technological modes of manufacturing
carbon fiber.

The search for ways to improve traditional carbon fiber manufacturing methods and improve
the implementation of the properties of the starting materials has led to the use of infrared (IR) heating
[5]. Heating is proposed to be used in the process of winding and polymerization of carbon fiber. Due
to the use of heating during winding, the viscosity of the matrix is kept constant, thereby ensuring
uniform filling of the filler. During the time that the heating acts on the filler and the matrix, they cure.
These processes occur due to the influence of energy quanta on the development of chemical reactions
between macromolecules, that is, photochemical processes of interaction arise [6]. In order to cure and
relieve internal stresses in carbon fiber, it is proposed to apply IR heating during polymerization. Thus,
the use of IR heating can reduce the manufacturing time, and also due to a more uniform heating, the
uniformity of the cured carbon fiber microstructure increases [7].

Formulation of the study purpose

In order to clarify the polymerization mode of a carbon fiber cylinder, mathematical modeling
of the process of heating a composite structure (cylinder) by infrared radiation using the finite differ-
ence method was carried out.

Presenting main material

To apply the finite difference method, we simplify the problem as follows. We will consider
the two-dimensional problem, therefore, we believe that along the z coordinate (along the cylinder
axis) no changes occur. We will also assume that the structure under consideration consists of two
parts, a composite and a mandrel, which are uniform in parameters: ¢ — density of the substance and
C — heat capacity. We will consider these parameters with index 1 for the composite and with index 2
for the mandrel.

We consider a composite anisotropic in thermal conductivity with thermal conductivity coeffi-
cients A, in the direction of the radial coordinate and c, in the direction of the angular coordinate. We
consider the mandrel isotropic in thermal conductivity with a thermal conductivity coefficient of A,.
We also consider these coefficients constant within their bodies.

The temperature 7 at each point of the composite under the influence of IR heating is de-
scribed by such equations

- 6—S+ oaﬁ =a,sNT exp —E, + Csq, (D
ot o RT
2 2
gﬂoa—T:L % ,la—§+kla—€ + 1+6S ) 2)
ot 0p pele Oz * 0p o,

where s is the degree of polymerization at each point of the composite, a function that takes the value
of unity at the beginning of polymerization to zero during complete polymerization; @ — angular ve-
locity of rotation of the cylinder; 7 — time; ¢ is the angular coordinate; z is the coordinate along the
radius of the cylinder associated with the radius r by the formula z = Inr; & is the coordinate associated
with the coordinates 7and ¢ by the formula £&=0,5( ¢/ ®); a, is the rate constant of the polymerization
reaction, showing the reaction rate at the maximum concentration of molecules that enter into the reac-
tion; R is the universal gas constant (8.31 J/K); E, is the activation energy of the molecule; C is a con-
stant indicating which part of the radiation leads to the polymerization reaction; g, is the power of IR
radiation in the composite unit volume calculated by the location of the IR fixtures. Formula (1) is a
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consequence of the Arrhenius equation describing the polymerization process, and formula (2) is the
equation thermal conductivity.
The temperature 7 at each point of the mandrel under the influence of IR heating is described

by the heat equation
oT or 1 |\(OT oT 3
—+(D—:—T —2+—2 +q2 s ( )
o pGle &
where ¢, is the infrared radiation power in a unit volume calculated by the location of the IR lumi-
naires.

The boundary conditions were adopted as follows. On the outer surface of the cylinder, there
is both heat exchange with the surrounding air and radiant heat transfer, obeying the Stefan-Boltzmann
law [8]. The boundary condition here has the form

oT .
A‘rla_z .. =e (o, +a, (T -T,)>
where z; is the quantity associated with the radius of the outer surface »; of the cylinder according to
the formula z, = Inr;0; 1s the known coefficient of convective heat transfer for the outer surface; o is
the radiant heat transfer coefficient depending on the body temperature 7, the environment 7, and the
degree of blackness ¢ the formula

o, =5,67-10"e(T + T, +546)| (T +273)" + (T, +273)" |-

On the inner surface of the composite cylinder, only heat exchange with the surrounding air
takes place:

oT
}\‘ 2
oz
where z is the value associated with the radius of the inner surface 7, of the cylinder according to the
formula z, = In ry; &, — convective heat transfer coefficient for the inner surface. At the boundary

between the mandrel and the composite cylinder, contact heat transfer conditions apply.
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where z, — the value corresponding to the radius of the boundary 7, according to the formula z,=In ;.

Equations (1)—(3) together with the corresponding boundary conditions form a boundary val-
ue problem. The unknowns in this problem are the quantities s and 7, and the remaining quantities are
considered known.

To solve the problem, we cover the region of the cylinder section, which is a ring, with a regu-
lar grid (Fig. 1). To do this, we determine the radius step in the composite part /.;, the radius step in
the mandrel 4., the angle step A, and the time step /g, as well as the corresponding coordinates of the
grid nodes according to the formulas

=eo,(T-T.)

z=Zy

% r

S
=

\4

Fig. 1. Drawing a finite difference grid
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i=1,2,.,N+1; hﬂ:Zl;[Zz; zi=z+h, (i-1);
i=1,2,.,P+1; hﬁ:Zz;ZO; 2=z +hy(j-1);
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¢

m=12,..M; h = v 59, = h,m;

k=1,2,..,L; t,=hk.
where N, P — the number of partitions in the radial direction for the composite and mandrel, respec-
tively; M — the number of partitions in the radial direction for the composite and mandrel, respective-
ly; L — number of time slots.

The last point with j =P + 1 for the mandrel coincides with the first point with i = 1 for the
composite

As a result of replacing the partial differential equation by difference relations, a system of al-
gebraic equations is obtained. This system is nonlinear due to the nonlinearity of equation (1). To
solve the resulting system of nonlinear equations, the Gauss-Seidel iterative method was used. This
method is inferior to some direct methods, for example, the sweep method, for problems in a linear
formulation of the solution speed. But nonlinear problems are solved by this method at almost the
same speed as linear ones; therefore, when solving nonlinear problems, the advantages of direct me-
thods are lost. The Gauss-Seidel method is easily programmable [9]. It is well suited for solving prob-
lems of unsteady heat conduction with a time step, since for the initial approximation of the solution at
the next time step, we can take the solution obtained in the previous step.

In order to ensure the stability of the computing process, an implicit scheme of the finite dif-
ference method was used. An implicit scheme is a finite-difference discretization scheme in which,
when moving from the time layer & to the time layer & + 1, the sampling for spatial variables is carried
out for the layer £ + 1.Discretization for spatial variables is as follows.

61| [T en

L;" +Cq1jd§}=
—exp{—a Ifexp “dé}exp{ quj‘dé}

If the value of s(&;) is known for a certain value of &;, then the transition from &,A€ is carried
out according to the formula

s(&)—s(& )exp{—a I\/_exp E, d&}exp{—qud&]

We choose the value & on the current temporary layer, and the value &; — on the previous one.
We calculate the integrals by passing from curvilinear integrals of the first kind to the usual definite
ones. To do this, we pass from the variable & to the variable 1, considering it independent.

d (p (r
T(E)exp——~—A<dE = T (1,0 exp dr;
VT @ 746 = VT e ) RT(w())J
g T 2
Jag=1 |1+ [—d@(r)j dr,
&1 T d T
where 1, — time corresponding to the previous temporary layer; do(t) = dr.
The value under the integral is calculated as follow

\/1+(d(2—(;)y= 1+’

Certain integrals are calculated using the trapezoid formula
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J‘J t(P( exp T(P( ))\/1+co dt =
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The value T (t,¢(7)) is taken as 7:/:1 — the temperature at the grid node with the spatial coor-
dinates i and m on the time layer with the number £ + 1, and the corresponding value T (t1,9:(11))
which we denote as kaw , 1s calculated by linear interpolation using the closest values on the pre-
vious temporary layer:

Ti’km’m - T(Tl’(P(Tl)): Tz’f‘mfm2 [ O;Ih J + Tzkm m [mz N O;IhT Ja

¢ ¢

m, = floor Ok, ;  m, =ceil Ok, ,
h‘D h‘D

where floor — rounding down function; ceil — rounding up function.
k

We denote by the Siom degree of cure of the composite at the grid node with the spatial coor-
dinates i and m on the time layer with number k. The discretization of the quantity s (&) is carried out
similarly to the quantity T (&;) =T (t1,¢1(11)), which gives

h h
S(&) lmO)_ lkmmz(u;lT 1J+Slm ml(mZ_Oth.

¢ ¢

Discretization of equation (1) gives

lmﬁ)_l

k+1 2 1 k _Ea k+1 E
Sim = Simo exp{ hANl+o l:Eal «/Z,m,m exp =T + JT exp 7 + Cq,

k

i,m,m i,m
where lem — temperature at the grid node with spatial coordinates i and m on the temporary layer
with number £; Sikm — the degree of cure of the composite at the grid node with the spatial coordinates

. . k k .
i and m on the temporary layer with number £; me and Simo— the values of the corresponding
quantities obtained by linear interpolation from the two closest values from the grid.

Values 7% and Sikm o are calculated on formulas

T;km ,® = T;km—m O)ht + T;km m m2 - O)ht ’
’ ’ h‘P 1 h‘P

Sik,m,(»: zkm mz[wh j-'_szm ml[mz_wh‘c};
h h,

floor[ j = ceil[mht j,
h‘P
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where floor — rounding down function; ceil — rounding up function.
The discretized equations (2) and (3) look like this

+ + + + + +H
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where Tl.km — temperature at the grid node with spatial coordinates i and m on the time layer with

number £; Sl.km — the degree of cure of the composite in the grid node with spatial coordinates i and m

at temporary layer with number £.
At boundary nodal points, finite difference relations are written as follows. On the bottom
edge of the mandrel or composite in the absence of a mandrel

T 7:: +7;kHB2 +0, 5Q2,1,m Lt 7:: +7;kHB2 +0’5Q,l,m .

o1 1M

Lm st m T ’
1+, 1+,
where B, = & is for composite without mandrel and B, = A is for mandrel.
o,h, e’ o,h_e”

On the top edge of the composite
k+1 k+1 k k+1 k+1
_ T; + TN,mBl + 0’ 5(Ql,N+l,m + SN+l,m - SN+l,m + Q(Si,m - Si,m—l ))

T]l\;‘tll,nl - 1+ B ’
1
A — + + 2
where B, = - +0cﬂr)lhz,1ez"v“ o, =5,67-10"¢( T3, + T, +546) [(Tjg;l{m +273) +(T, +273)2}

We derive the relations for the boundary conditions between the mandrel and the composite.
To do this, we carry out finite-difference discretization of the equation.

o°’T

Second derivative — is shown as follow
0z
k+1 k+1 k+1 k+1
Lon = Lo - T =L k+l K+l K+l K+l
+ + + +
azT _ hzl hzZ _ hzZ (TZ,m - Ti,m ) - hzl (Ti,m - TP,m )
522 hzl + hzZ hzthZ (hzl + hZZ)
2
k+1 k+1 k+1
2T2,m 2T'P,m _ 27—;,m

+
hzl (hzl + hZZ) hzZ (hzl + hZZ) hzthZ

On the border between the mandrel and the composite
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where is the value 75 . ! tefer to the mandrel, and the values 7;/;1 u Tzk;ll — to composite.

The algorithm for solving the problem using the Gauss-Seidel method is as follows. Denote
the solution for the degree of cure on (k+1) time layer as

U — Sk+1

n,m’

and the solution for temperature on (k+1) temporary layer as

_ mk+l
Vim =Ty

nm

Herein n means general index for i and j. To get solutions of U,,, and V,,, it is needed to do
the following operations. As initial approximations of solutions to (k+1) temporary layer U f,m and
Vno,m decisions are made on k temporary layer. If approximations U/ ,i . and an,m are known, then to
search for approximations U/ i*}; and p"*! all points of the cylinder are bypassed, primarily from the
inside out, and secondly along the circur,nferential coordinate. At each point of the cylinder, the values
U ;*’; and an:nl are calculated. The formula for calculating this value depends on whether the given

point is internal or boundary. Formulas for internal points are derived by replacing the values in ac-
cordance with the notation, resolving the obtained equations with respect to U i*nt and an;l and ar-

rangement of superscripts at U and V according to whether the new value of a given quantity is

known, giving preference to the new. These formulas are written as follows

) — e 3 E,
l]ll,ml - lmOJeXp h l+o _al( i,m,m eXpRT +\/V76XPRV
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Formulas for boundary nodes are derived similarly to formulas for internal nodes. The formu-
las for the point of the outer surface of the composite are as follows

o oy, =5,67-10°(V, +T0 +546)[(V]’Mm +273) (T, +273)2}

+]

B{ _ 7\‘rl
N+HLm / Zyel 0
((x’l + (x‘fl,NJrl,m ) hz,le
+ + + +
R 7: + lev Nt T 0, 5( Q,N+1,m + UlNJrl,m _S}kwl,m + Q( UlNJrl,m - UlN+1,WF1 )) ]
N+lm — /
1 + BI,NJrl,m

The formulas for the point on the inner surface of the composite in the absence of a mandrel
look like this

A

7l

.= he
zl
T 050, U S )

b 1+B,

The formulas for the point on the inner surface of the mandrel are as follows
7“2
B, = P
%hZZe
i _ 095Q2,1,m +1, +I/2[mB2 ]
v 1+B,

The formula for the common points of the mandrel and the composite is as follow:
-1

A
R I L |
h‘t h(p e plcl h(p hzlhz2 pZC2 h(p hzlhz2
Vl+l k
X 095(Q11m +Q2lm +U11J;r: _Slkm +Q(U11J;r: _Ull:r:fl))-i_(’o — +ﬂ+
” ” ’ ’ ’ ’ h, h.
1 1+1 1 1+1
+ 122 I/;,erl +2V;,ml [ 7\‘(pl + 7\‘2 )4‘ 2 [ 7\‘rl + 7\‘2 ] I/v2,m + VP,m
2e™ h(p PiC P65, h,+h,\pc pc, )\ by h,

In addition to the values Vsl:nl when traversing nodes, values are also calculated
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N+P+2 M
_ 1+1 .
S= Z ZV;,m_Vv,m’
s=1  m=1

N+P+2 M
Si= 2. 2
s=1  m=1

which serve to evaluate the accuracy of the solution.

Fig. 2 shows the results of the calculation using the finite difference method of the cylinder on
the mandrel with the following initial data: »=0,07225 m; r,=0,073 m; 5=0,08 m; «©=0,7 c'l;
2=0,371 Wt/m* deg; ¢=1,08 kl/kg deg; c=1450 kg/m3; e=0,7; 8,=40 Wt/m* deg; 06x,=33 Wt/m* deg;
E=1,3 MeV; I=3 mA /m.; p=1 1/m. Sampling parameters N=5; M=32; L=1000.

[+1
Vv,m

9

500
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300 FRSSSRc

200 -
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100 -

0

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Time, min

Fig. 2. The temperature distribution on the surface of the cylinder from the time of exposure to
IR heating

In the above figure, the red lines indicate the maximum and minimum temperatures for the cy-
linder surface obtained by the finite difference method, the blue lines represent the analytical solution
of the problem for a point on the lower surface of the cylinder rotating with the cylinder. With this
discretization, the error of the numerical solution is at a time of 120 minutes 11 %. The error of the
numerical solution was calculated by the formula

L=T 100%,
T

where T, — T, =323 — 298 = 25 K — maximum cylinder temperature difference between analytical
and numerical solutions; 7, = 324 °K — average cylinder temperature

Figure 3 shows a graph of the degree of cure of the carbon fiber cylinder on the time of expo-
sure to IR heating. If we take s = 0.1, then the upper graph almost reached this value in 240 minutes.

Based on the presented figures, it follows that under the given polymerization conditions when
exposed to IR heating, the carbon fiber cylinder will reach a cured state within 240 minutes.

This calculation was confirmed by analyzing the degree of polymerization of a carbon fiber
fragment cut from a cylinder that was cured by IR heating. Determining the degree of polymerization
is one of the criteria confirming the correct choice of the polymerization mode for carbon plastics.

Table 1 shows the results of determining the degree of polymerization of carbon fiber made
from carbon fiber using standard technology (using convective heating) and using infrared radiation.
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Fig. 3. Dependence of curing cylinder degree on the time of exposure to IR heating

Table 1. Carbon fiber polymerization degree

Carbon plastic type Polymerization degree, %
Carbon fiber manufactured using standard
94—96
technology
Carbon fiber manufactured using IR radiation 95 —96

The calculated degree of polymerization of carbon plastics is in the range from 94 to 96 %,
which is sufficient to decide on the suitability of the manufactured carbon fiber. The use of IR
radiation during the curing of carbon fiber has allowed to obtain a high degree of polymerization with
a significant reduction in the polymerization time of the carbon fiber cylinder.

Conclusion

1. The task of temperature distribution in a rotating thin-walled cylinder with a thickness of
the order of 1 mm, subjected to infrared radiation during curing, is formulated.

2. Computational experiments have been carried out to study thermal processes in carbon fi-
ber reinforced plastic and it has been established that the selected infrared curing mode makes it possi-
ble to obtain a fully cured cylinder.

3. The established dependences make it possible to take into account the change in the physi-
comechanical characteristics of the products during storage and operation.

4. The correct choice of the infrared curing mode of the carbon fiber cylinder is confirmed by
the analysis of the degree of polymerization of the finished carbon fiber.
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MATEMATHUYHE MOJIEJTIOBAHHS ITPOILIECY HAT'PIBY KOMITIO3UTHOI
KOHCTPYKIII IH®PAYEPBOHUM BUITPOMIHIOBAHHSIM
PoxxoBcbkuii B.®., Manbko T.A., Pomencbka O.I1., 3eBako B.C.

Pedepar

Icnyroui BUpoOHMYI MOTpeOM Cy4acHOrO PHUHKY MPEN'sBISIOTh BCe OUIBII 3pOCTar0yi BUMOTH
JI0 XapaKTEepUCTHUK CYyYaCHUX MaTepiaiiB AJsl PO3IIMPEHHS 00JacTi X 3aCTOCYBaHHs B OLIBII XKOpCT-
KHX 1 eKCTpEeMalIbHIX YMOBAxX 3 OAHOYACHHUM TOIIYKOM €KOHOMIYHO BUTITHMX BUPOOHUYMX MPOLECIB
OTpUMAaHHS TOTOBUX BUPOOIB.

B aepokocMmiuHii TexHIli MUPOKE 3aCTOCYBAHHS OTPUMAJIH MOJIMEPHI KOMIIO3ULIIHHI MaTepi-
anmu (IIKM) Ha OCHOBi ByIJiel|eBHX BOJIOKOH. YHiKaJbHi BIaCTUBOCTI KOMIO3ULIMHUX BOJOKHUCTUX
MaTepiajiB BU3HAYAIOThCS, B MIEPILY YEPTy, BHCOKUMHU MEXaHIYHUMH BIACTUBOCTSIMH CaMHX BOJIOKOH.

Bigomo, mo Ha xapakrepuctuku [IKM BruMBae TeXHOJIOTTYHHMIA pEeXUM BUTOTOBJICHHA. Tpa-
JULIHHO, BUPOOU 3 BYIJIELIEBUX BOJOKOH OTPUMYIOTH METOJAaMH HAMOTYBaHHS a00 BHKJIAJKH Ha (o-
PMyIO4y OIpaBKy 3 MOAAJIBIIOI MOJIMEPH3ALi€l0 B cliemiadbHUX mevax. Taki Meroau € OaraTocra-
TIHHUMH, TPYIOMICTKUMH 1 BAMAraroTb BUCOKMX €HEPreTHYHHUX BUTPAT.

[Momyk NMUIAXiB MOJIMIIEHHS TPAAMIIIMHAX METOMIB BUTOTOBIICHHS BYTJICIUIACTHKIB 1 TiBH-
LICHHS peastizalii BIacTUBOCTEH BUXIOHMX MartepiaiiB, MPHUBEIH OO BUKOPUCTAHHS iH(PpauepBOHOTO
HarpiBy. HarpiB mpomoHyeThscsl 3aCTOCOBYBaTH B MpoOLieci HAMOTYBaHHS 1 ToliMepH3allii Byrieriac-
TUKa. 3aBISKH 3aCTOCYBAaHHIO HArPiBYy B MPOLIECi HAMOTKH 30€piraeThCs MOCTIHOIO B'SI3KICTh MAaTPHULI
(criomy4HOr0), THM caMHM 3a0e3leuyeThCsl PIBHOMIPHICTH MPOCOYEHHS HamoBHIOBada. [Iporsrom
BIUIMBY iH()pauepBOHOTO BUIIPOMIHIOBAHHS HA HANOBHIOBAY 1 MaTPHULIO BiAOyBarOTHCS MpOLECH iX
3arBepAiHHA. Lli mpouecu BinOyBarOThCs 3aBISKH BIUIMBY KBAaHTIB eHeprii hx Ha pO3BUTOK XIMIYHUX
peakuiii MbK MakpoMOJIEKyJaMH, TOOTO BUHUKAIOTh (DOTOXIMIYHI IIpoLecH B3aeMOAil. 3 METo J00T-
BEPIIHHS 1 3HATTSA BHYTPIIIHIX Halpy:KEHb B BYIVIEIUIACTHKA iH(ppauepBOHUN HATPIB MPOMOHYETHCS
3aCTOCOBYBATH B Mpoleci moaimepusanii. TakuM 4MHOM, 3aCTOCYBaHHS iH(padYepBOHOr0 HArpiBy J0-
3BOJISIE CKOPOTHTU Yac BUT'OTOBJICHHS, a TaKOX 3aBISKU OUIBII PIBHOMIPHOMY MpPOrpiBaHHIO, 301b-
LIYETHCS] OAHOPIAHICTH MIKPOCTPYKTYPH 3aTBEPALIOrO BYIJICIIACTHKA.

B poboti, 3 MeTol0 yTOYHEHHS PEeXHUMY MOJIMEpU3alii BYIJIEIIACTUKOBOI IMIiHAPHYHOT
KOHCTPYKIIii, MPOBOAMIN MaTeMaTHUHE MOJEIIOBAHHS MPOLECY HArpiBy KoMno3uty (uuiinapa) ing-
pavepBOHMM BUIIPOMIHIOBaHHSIM IPU BUKOPUCTaHHI METOAY KiHIIEBUX Pi3HHUIIb.



136 Maremaruune mozemroBans Ne 1(42) 2020

3a JONOMOrol0 MaTeMaTHYHOTO MOJIEMIOBAHHS BCTAHOBJIEHO, IO MPU 3aJaHUX PEXHUMaX IMO-
JmiMepu3alii mix BIUIMBOM iH(PadepBOHOIO HATPIBY BYIJIEIUIACTUKOBUN HMIIHADP mpoTtsaroMm 120 xBu-
JIMH JOCSITHE TOBHICTIO 3aTBEPALIOro craHy. JlaHi po3paxyHKy miATBEpAXKEHI aHAJIi30M CTYIEHs IO-
nmimMepu3aii (pparMeHTa ByIJemiacTuka, BUPi3aHOro 3 LIIIHAPa, 3aTBEPALIOrO i BIUIMBOM iH(paye-
PBOHOI'O HArpiBy. 3HA4YEHHs CTYIEHS MOTIMepH3alii ByTrJemIacThKa Py BUKOPUCTaHHI iH(ppayepBo-
HOI'O BUIPOMIHIOBAHHSI ITPU 3aTBEPAIHHI CTAaHOBUTH 95—96 %.
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