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AN EFFICIENT ALGORITHM FOR SOLUTION OF THE MAGNETOSTATICS PROBLEM
FOR QUASIVISESYMMETRIC SYSTEMS

ЕФЕКТИВНИЙ АЛГОРИТМ РІШЕННЯ ЗАДАЧІ МАГНІТОСТАТИКИ
ДЛЯ КВАЗІВІСЕСИМЕТРИЧНИХ СИСТЕМ

As you know, in the practice of magnetostatic calculations, three classes of magnetic systems
(MS) are distinguished: flat, axisymmetric and three-dimensional. But there is a subclass of MS that
naturally combines the features of axisymmetric and three-dimensional systems. This class is of great
practical importance. Such MC are widely used, first of all, in electronic engineering: they are a
number of electron-optical devices, primarily klystrons and magnetrons.

Such systems have an almost axisymmetric geometry, but, what is very important, have a
three-dimensional part, as the working area of the device. This introduces three-dimensional
disturbances into the Pochtak axisymmetric MS, and these inclusions significantly distort the
axisymmetric nature of the field precisely in the working part of the MS. First of all, it can be holes or
slits in multi-beam electronic optical systems, filter matrices in magnetic separators, and the like.
Moreover, the volume of this three-dimensional part is quite insignificant. According to the condition
of the task, the calculation of the field strength must be performed precisely in the working, three-
dimensional part of the MC, and, as a rule, the calculation must be performed very accurately.

The calculation of axisymmetric as a three-dimensional MS is unsatisfactory, first of all, as it is
very inefficient. In addition, it is necessary to find the field strength in the immediate vicinity of the
working area of the QAS. Therefore, a high level of discretization is required in the working area of the
QAS. Even if you try to maintain approximately the same level in the working part and the axisymmetric
part of the MC, the number of elements will be unacceptably large, and this will lead to poor
convergence of the iterative process. If the discratization is performed unevenly, it will also lead to even
worse convergence of the iterative process of the decision to determine the magnetization vector of the
MC due to the significant variation in the sizes and shapes of these elements. Because the system of
linear algebraic equations (LAL) in both cases will be ill-conditioned. The non-linear nature of the
solution process and the possible saturation of the magnetic field further complicate the situation.

Keywords: magnetic systems; integrated equalization; electron-optical devices;
approximation; numerical modeling.

Розглянуто підклас магнітостатичних систем, який поєднує в собі особливості вісеси-
метричних та тривимірних систем, — квазівісесиметричні системи. Показано, що розрахунок
таких магнітних систем має істотні особливості. Запропоновано ефективний цих, що склада-
ється з двох етапів. Наведено практичний розрахунок такої магнітної системи.

Ключові слова: магнітні системи; інтегральні рівняння; електронно-оптичні прилади;
апроксимація; чисельне моделювання.
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Problem’s Formulation
Modeling and optimizing the operation of magnetostatic systems (MS) is highly relevant, as

such systems make up a significant part of modern high-tech devices. To model them, it is necessary
to create efficient and versatile algorithms that allow for a detailed study of MS operation in various
modes. The requirements for an algorithm for high-precision calculation and optimization of such MSs
should be described. A prerequisite is the ability to calculate MSs for a nonlinear magnetic environ-
ment, complex, almost arbitrary geometry of the magnetic system, and arbitrary primary fields. In par-
ticular, the saturation of the magnetic circuit must be modeled efficiently. Also, such algorithms
should allow modeling MS for arbitrary ferromagnetic materials.

In the practice of magnetostatic calculations, three classes of MS are distinguished: planar, axi-
symmetric, and three-dimensional, and the calculation of three-dimensional systems is much more compli-
cated than axisymmetric, and even more so than planar ones. But there is a subclass of MS that naturally
combines the features of axisymmetric and three-dimensional systems. It is of great practical importance.
These MSs are widely used primarily in electronic optics: a number of electron-optical devices [1—2],
primarily klystrons and magnetrons. MS of this structure are also widely used in magnetic separation.

Such systems have an almost axisymmetric geometry, but, crucially, they have a three-
dimensional part containing the working area of the device. This introduces three-dimensional pertur-
bations in the initial axisymmetric MS, and such inclusions significantly distort the axisymmetric cha-
racter  of  the field in the working part  of  the MS. These can be holes  or  slits  in  multibeam electron-
optical systems, filter matrices in magnetic separators, and so on. Moreover, the volume of such a
three-dimensional part is insignificant, less than 2—5% of the entire MS. However, the developer is
interested in calculating the field strength in the working, three-dimensional part of the MS, and, as a
rule, the calculation must be performed very accurately.

Therefore, formally, the formulation requires considering such an MS as a three-dimensional
one, since it is the three-dimensional nature of the field that plays a decisive role in the operation of
the device, for example, when focusing electron beams in the pole tip aperture zone in multipath elec-
tron-optical systems [1—2]. On the other hand, the rapid attenuation of three-dimensional disturbances
at  a  distance  from  the  working  part  makes  it  unreasonable  to  calculate  the  entire  MS  in  a  three-
dimensional approximation, although almost all known programs are based on such principles. As al-
ready mentioned, the decisive role is played by the fact that it is in the working area that almost pre-
cise field calculation is required, and in the main part the calculation is not essential or can be per-
formed with less accuracy. This allows us to consider such systems as a separate subclass of both axi-
symmetric and three-dimensional magnetic systems. Logically to call them quasi-axisymmetric sys-
tems (QAS). The calculation of these systems has significant features that distinguish them from the
class of three-dimensional and axisymmetric systems MS.

It should be noted that the calculation of QAS as a three-dimensional MS is unsatisfactory,
first of all, as it is very inefficient. In addition, since it is necessary to find the field strength in the im-
mediate vicinity of the QAS working area, a high level of discretization is required in this area. If you
keep approximately the same level of discretization in the working and axisymmetric parts of the MS,
the number of discretization elements will be unacceptably large, and this will lead, as practice shows,
to poor convergence of the iteration process. If the discretization is performed unevenly, it will lead to
even worse convergence of the iterative process of determining the MS magnetization vector. The sa-
turation of the magnetic circuit further complicates the situation. Consequently, for conventional algo-
rithms, the iterative process will converge poorly for such systems and the result will be inaccurate.

Analysis of recent research and publications
The most elementary method for modeling MS is the finite difference method (FDM) [3], but

for stationary problems it is currently only of theoretical importance. A more advanced method for
calculating MS is the finite element method (FEM) [4—6]. But FEM has a significant drawback in
terms of calculating open MS. For this method, it is necessary to set boundary conditions of the first
kind, and such boundaries are chosen where the magnetic potential is approximately equal to zero. But
this cannot be done precisely, which introduces an error in the calculation.

Another method for calculating MS is the method of integral equations for physical field vec-
tors [7]. For open MS, it has a significant advantage over FEM.
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Formulation of the study purpose
The purpose of this paper is to formulate and justify an algorithm for the efficient calculation

of QAS based on the method of integral equations [7]. When designing electron-optical systems, a
large number of numerical experiments are required to optimize the geometric parameters of the MS,
so the algorithm must meet rather stringent requirements: both high accuracy and speed. It was men-
tioned earlier that calculating QAS as an axisymmetric MS will give a completely incorrect result. In
turn, the calculation of QAS as a three-dimensional MS is also unsatisfactory, as it is very inefficient
and has difficulties with the convergence of the iterative process. Therefore, a two-level solution algo-
rithm is required to calculate the high accuracy QAS. Namely, first, the MS is calculated in the axi-
symmetric approximation, then the working part is calculated in the three-dimensional approximation,
with the main axisymmetric part of the magnetic system being the initial field for calculating the
working three-dimensional part. The paper proposes an effective algorithm for calculating QAS mag-
netostatic fields by the IR method, consisting of two stages.

Presenting main material
The general equation of magnetostatics for the three-dimensional case can be written in the form:
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Here )(xM — magnetization of the environment, R — radius vector from point x to y, )(0 xH —
primary sources field, )(xl — known function that depends on the relative magnetic permeability at
point x, it can be calculated using the magnetization curve. The area of magnets is divided into ele-
ments that have no intersection over a area having a volume greater than zero:
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Here M — constant vector, and the vector n  — outer normal of the surface S. In order to obtain the
final field, we need to sum (2) over all elementary volumes, i.e.
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QAS calculation algorithm
Main task of the QAS calculation is to calculate the magnetic field strength vector (3) at the

specified points located in the three-dimensional working area. This calculation must be performed
with maximum accuracy. From the previous, an effective algorithm for calculating such MSs follows.
It is advisable to perform the calculation in two stages.

1)  Let's  divide  the  total  MS  into  two  parts:  the  working  areas,  where  the  field  is  three-
dimensional, and the general axisymmetric part, where the field is practically axisymmetric. Let us
denote the total MS by D, the axisymmetric part by DV, and the working three-dimensional domain by
DТ. It's obvious that D = DV U DТ,  and  mes  (DV ∩ DT) = 0. Thus, the entire system consists of these
areas only, and the DV and DТ  areas may have a common surface, but not a common volume. Let us
form an array of centers of elementary areas DТ = U Di,  belonging to the working area,  i.e.,  the area
DТ.  First  stage of  the calculation is  performed in the axisymmetric  approximation for  the entire  MS,
and the DT area is also considered in the axisymmetric approximation. To be more precise, the three-
dimensional DT area is replaced by the axisymmetric DTV area, which is as close to it as possible. This
means that the three-dimensional elements of areas ignored. For example, the area of holes in the DT is
treated as a solid metal. Next, the MS calculated in the axisymmetric approximation.

2) At the second stage, the part of the system DМ = D\DТV source of the primary field, and the
field of the DТV area is not taken into account. To do this, at the points of the centers of the elementary
DТ areas and the outer points where the magnetic field strength is to be found, the field from the DМ
area is calculated by equation (3). It is possible because at the first stage, the field of the magnetization
vector in the DМ  area is  known.  Now, the second stage of  the calculation can be performed — the
three-dimensional one. To do this, a three-dimensional magnetostatics problem is solved for the DТ,
area, with the constant axisymmetric field of the MS sources and the magnetization field of the DМ
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area  used  as  the  primary  field.  The  basis  of  this  algorithm is  the  fact  that  the  volume  of  the  three-
dimensional DТ area is insignificant, so its influence on the distribution of the magnetization vector in
the DV area is practically absent, or rather, it decreases rapidly. The most difficult point for calculating
the QAS is to mentally separate the DТ and DV areas.

Example of QAS calculation
As an example, we considered a magnetostatic multistellar klystron, an electronic optics de-

vice. In Fig. 1 shows a general sketch of the device.  The system is quasi-axisymmetric, where the axis
of rotation is the Y-axis, and the system also has a plane of symmetry, the Z-axis. Primary sources of
the magnetostatic field are direct current coils, which are crossed out in the sketch. The DT area  is
marked in black. It contains 8 through cylindrical holes, each with a diameter of 3 mm. The holes are
used to control the flow of electrons passing through the device. These holes distort the axisymmetric
field pattern in the DТ area.  Fig.  2  shows  an  enlarged  part  of  the  magnetic  system,  the  three-
dimensional GT area is marked in black, as in Fig. 1.

Fig. 1. Geometry of the axisymmetric part of the electronic optics device

Fig. 2. Enlarged part of the workspace
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Fig. 3. The main fragment of the
three-dimensional area and its initial
discretization

Fig. 3 shows an enlarged main fragment of
the three-dimensional areas, whose height does not
exceed 11 mm, and its discretization into primary
polyhedral. This is only half of the hole, the other
half  is  symmetrical  about  the  Y-axis.  Each  of  the
polyhedral was divided into elementary polyhedral,
and there were 201 such polyhedral in this calcula-
tion. In addition, there were the same number in the
symmetric part. QAS material is nonlinear, electrical
steel. Fig. 4 and 5 show the results of QAS calcula-
tions. In Fig. 4 is the Bz(z) dependence, and Fig. 5 is
the By(z) dependence. The observation points were
selected in the center of the hole with coordinate
Y=11, along the entire length of the hole along the Z
axis. The number of observation points is N=21.

The developer was primarily interested in
the By(z) curve, as the correct operation of this elec-
tronic optics device depended on it.

Experimental data confirmed the calculation
results, with a discrepancy of 3—4%. It should be
noted that with the increase in the number of ele-
mentary polyhedra, the calculation accuracy slowly
increases. The process of calculating the SLAR
coefficients for the three-dimensional domain took
the most time. The time for solving the problem at
the first stage is insignificant compared to the
second, three-dimensional stage.

Fig. 4. Distribution of the Bz component of the field along the hole axis
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Fig. 5. Distribution of the By component of the field along the axis of the hole

Conclusions
1.  We  consider  a  subclass  of  MS  that  naturally  combines  the  features  of  axisymmetric  and

three-dimensional systems. It is shown that the calculation of such MS has significant features.
2. An efficient algorithm for calculating QAS magnetostatic fields by the IR method, consist-

ing of two stages, is proposed.
3. A practical calculation of the magnetic system is carried out.
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