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MATHEMATICAL MODELING OF GYROSCOPE DYNAMICS
BASED ON QUATERNION

The paper is devoted to the mathematical description of gyroscope dynamics using quaternion
as nonsingular representation of rotation. In the previous works related to wire dynamics the angles of
spherical coordinate system can give wrong results in common configurations of a wire injected into a
melt. Present paper considers two models that are constructed using Euler-Lagrange equations and
compared in the problematic situation when one model gives unexpected trajectory of motion. Also for
checking the model another experiment with precession was carried out. Presented pictures show 3d-
model of gyroscope precessing under force of gravity with different speeds.
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Poboma npucesauena mamemamuynomy onucy OUHAMIKU 2SIPOCKONA 3 GUKOPUCMAHHAM
KB8AMEPHIOHY K HEeCUHSYIAPHO20 300padxcenHs obepmanHs. Y nonepeduix pobomax, no8'sa3aHUX 3
OUHAMIKOI0 NPOB00i8, Kymu chepuyHoi cucmemu KOOPOUHAM MOXCYMb NPU3BECMU 00 HENPABULIbHUX
Pe3yIbmamis y 3a2anbHux Kougicypayisx opomy, 68e0eHo2o 8 po3nias. Y 0anomy 00OKymenmi po3ens-
daromwscsi 080 modeni, nobyoosawni 3a donomoeow pieusaHs Eiinepa-Jlacpansca i nopiguwoiomoscsa 6
npobemuill cumyayii, Koau 00Ha mModensb 0ae Hecnodisany mpaekmopiio pyxy. Taxooic 01 nepegipku
Mooeni npogedeHo we o0un excnepumenm 3 npeyeciero. Ilpedocmaesneni mantonku nokasyrome 3D-
MOOenb nepepodKu 2iPOCKOna nid GNAUSOM CUU MANCIHHS 3 PI3HOKW WEUOKICTHIO.

Kniouoei cnoea: cipockon, pisnauns Eiinepa-Jlacpansica, keamepion.

Problem definition

At the previous works wire dynamics was modeled for metallurgical process. The wire is
represented by system of rods. The angles of the spherical coordinates (zenith — 6 and azimuthal —
¢) are used for an expression of rod's direction vector 1. There are configurations in which those an-
gles shows famous drawback — computed rod’s motion become numerically unstable and significant-
ly nonrealistic. For example, when sin(8) — 0 or when rod approaches to vertical orientation. Such
orientation of rods is very common, because cored wire is injected vertically into a liquid metal. Trials
of a simple avoidance of that problem didn't give any good result, so something better needs to be
found. To overcome mentioned drawback scientists recommend using quaternions, which also have
other advantages over the angles. Gyroscope dynamics is complex, that’s why it is well suited for test-
ing of quaternion components as generalized coordinates. Also gyroscope has orthogonal element,
which can be used to model wire's torsion.

Related publications

Author in his book [1] proposes three numerical algorithms to solve equations of motion using
integration of a first-order systems. The first algorithm uses generalized coordinate partitioning and
Newton-Raphson method at one of the steps. The second algorithm is direct integration that suffers
from accumulation of constraint error; however it is simple and can be used when timestep is suffi-
ciently small. The third hybrid algorithm uses constraint stabilization scheme, which was proposed by
Baumgarte [2], to accelerate computation when error is in satisfactory range.

Authors of work [3, p. 155] propose adding the expression which corrects quaternion norm in
a kinematic equation over time and solves deviation of it from unit norm problem. Because of quadrat-
ic dependency on the deviation the expression has potential nature and conserves mechanical energy.

In [4, p. 22—23] author states about numerical errors significantly arising when angles not on-
ly equals singular values, but also when they are in a neighborhood of the singular value. And these
errors lead to decreasing timestep for numerical integration. Then he proposes usage of such nonsingu-
lar parameters as nine directional cosines with six dependent ones or more effective quaternion with
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one dependent parameter based on Euler's rotation theorem. The author lists properties of quaternion
about its unit norm, a changing sign of parameters, constructing transformation matrix (which only
contains polynomial terms) from a given quaternion and getting a quaternion from an axis-angle repre-
sentation of a rotation.
Purpose of the research

The goal is a mathematical model of gyroscope dynamics using quaternion components as ge-
neralized coordinates to avoid unrealistic physical results in frequently met configurations of wire,
which was presented in previous works for steel treatment in the ladle. Another model will be pre-
sented using the angles of the spherical coordinates to compare results of the both mathematical
models.

Research materials

A gyroscope is represented by propeller-like system of
three rods. The first rod — axis of gyroscope — can be only
rotated around its free end. The first rod is orthogonally con-
nected to the second one and the third rod is just a mirror of
the second one.

Let the unit vector ©° correspond to the axis of the gy-
roscope and the unit vector 7’ — to the second rod (Fig. 1).

The vector 7i° firstly rotates by an angle ¢ in the plane X-Y,

' and then quaternion ¢ rotates both vectors n % and 7 in space.
i=gii%g Thus, orthogonality condition <ﬁ,%> =0 will be satisfied.

. . E has length i .. Radius-
Fig. I. Vectors transformations using very rod has length / and corresponding mass m; . Radius

angle ¢ and quaternion ¢ vectors 7, 1, r3 of the rods are defined as follows:
A= 1 f2=1%+llﬁ, @:1%—1171, (1)
2 2
< =2la,90 +61qu) 2009, ~ax00) % =la2-a2-a2+ad) )
ny = COS((p)(qx ~q7 42 + 4 )+ ZSin(cp)(q ydx — 429 ) 3)
n, = sin(cp)(tﬁ +q2 +q0 —qx )+ 2 COS((p)(qux +4:9, ) “4)
7, = 25in(0)g2d0 + 44, |+ 2c050)g.ax — 45 ). 5)

Dynamics of the mechanical system is defined by Euler-Lagrange equations, which need ki-
netic and potential energy:
d oK oK _ oP

di o) 8(11? Tt
3 . . . . .
K:Z;[%<F"’F">+I_l<%”%’>} p= Zm (6161> 1)2 1,~=m,~%l, (7)
i

where b — index of generalized coordinate (1..4 — for quaternion ¢, and 5 — for angle ¢); %l- —

(6)

speed of directional vector for i-th rod (i = 1..3); g — gravitational acceleration; /; — rotational iner-
tia of i-th rod rotating about its center; kK — coefficient of the quaternion ¢ unit norm restoration (the
larger it is, the better condition <q,q> ~1 is satisfied and as important consequence — approaching to

unit norm of the vectors T and 7).

The symbolic differentiation, simplification and linearization of above equations leads to the
system of linear algebraic equations that contain 5 equations and 5 unknown accelerations (4 — for
quaternion components and 1 — for angle ¢), which can be found using known velocities and coordi-
nates of rods.
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For the second case an orientation of the gyroscope is

Z expressed using angles of the spherical coordinates. In this
'I’E'_.:l © - case the vector 71’ is rotated around axis z by an angle vy
' > r representing self-rotation of the gyroscope around its axis.
A~ > 7 Then angles 0 and ¢ rotate both vectors %and 7#¥ automati-
7’ cally maintaining their orthogonality (Fig. 2). Also in this
0 / formulation using trigonometric functions the vectors T and
. ¥ - ; .
N, v n always keep its unit norm. These vectors are defined be-
e I low:

7’ v \2 7, =sin(8)cos(9), Ty = sin(0)sin(p), T, =cos(8), (8)
n fi, = cos(8) cos(p) cos(y) —sin(y)sin(g),  (9)

x - .
Fig. 2. Vectors transformations using iy, = cos(8) cos(p) cos(y) + sin(y) cos(¢), (10)
angles 0, @, v n, =—sin(0)cos(y) . (11)

The vector 71 can be also rotated using quaternion multiplication and after simplifications us-

ing trigonometric identities above expressions are found again.
Now potential energy needs only gravitational terms:

3
P=>"m7.8), (12)
i=1

In this case the SLAE has 3 equations and 3 unknown accelerations. The effective decomposi-
tion of Cholesky can be used to solve SLAE Mx = b, because of symmetry and positive-definition of
the mass matrix M. Integration of accelerations is done using Euler-Cromer method.

There are initial conditions when unrealistic modeled motion of the gyroscope can be seen.
For example, the axis of the gyroscope is in plane X-Y, and then it is rotated about z axis by 45 de-

grees. The second and the third rod are in plane X-Y:%z(ﬁ/2,\/5/2,0),

n= (\/5 / 2,—\/5 / 2,0), ¢=vy =1 rad/s, m=1 kg, /=1 m. Results show significant difference for the first
coordinate set (Fig. 3) and the second one (Fig. 4), especially after x coordinate of T changes sign.

Y —7]

] —=

| x

v

Fig. 3. Evolution of T components in the case Fig. 4. Evolution of T components in the case
of quaternion ¢ and angle ¢ of angles 0, @, v
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This unexpected behavior can be explained by diagonal elements of mass matrix tending to ze-
ro (feature of spherical coordinates), and, as consequence, numerical errors become very large.

There is famous effect of a spinning top — changing of spinning axis orientation (precession)
under action of gravity — rotation about z axis. Our model of gyroscope also has this behavior (Fig. 5,
6, 7). At the start of the experiment the gyroscope oriented along x-axis and it has nonzero spin speed.
The force of gravity acts along z-axis. During the experiment the gyroscope doesn't fall and rotates
about z-axis. If mechanical energy is conserved then rotation lasts very long time. As showed on the
pictures below, the higher initial speed of spin is, the lower the rotational speed of the gyroscope about
z axis becomes. On the pictures dashed line is y-axis, solid line is x-axis, all pictures are top view.

Fig. 5. Configuration after 1 second — large precession when spin is low

Fig. 6. Another configuration after 1 second — medium precession when spin is medium

Fig. 7. The third configuration after 1 second — small precession when spin is high

In addition the video of the precessing gyroscope based on the built mathematical model is
available on the Internet [5].
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Conclusions and future improvements

The quaternionic expression of T gives more numerically stable solution. Eventually it re-
quires 4 equations with additional term for unit norm, but they are simpler than expression with an-
gles, because of trigonometric functions, which automatically preserve unit norm. In some applica-
tions such formulation using angles of spherical coordinate system is enough, but in case of cored wire
dynamics the quaternion is a winner.

In future unit norm condition can be explicitly satisfied by definition of quaternion using three
variables (angle-axis representation) in the expense of dividing operator appearing in equations of mo-
tion.
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MATEMATHUYHE MOAEJIOBAHHSA IMHAMIKU I'TPOCKOITY HA OCHOBI
KBATEPHIOHA
Kpacnikos K.C.

Pedepar

ABTOp cTaTTi po3rismae mMpoOIeMy BHUPODKCHHS KYTiB CEpHIHOI CHCTEMH KOOPAWHAT, IO
CTIPUUMHSIE HEPEaTiCTUUHY MOBEIIHKY APOTY Y METaIyprifHOMY MpOIeci KOBIIOBOTO JOBEICHHS CTa-
71 Ha mpuKIIani pyxy ripockony. OpieHTauis qpoTy miJ yac nepediry JaHoro mpouecy Ha MpoTssi 3Ha-
YHOTO Yacy Ma€ BEPTHKAIBHHH XapakTep, MPH YoMy O3HaueHa MpoOieMa BHUPOIKEHHS KOOPIUHATH
BUHHKAE CaMme IPH BEPTUKAIBHOMY PO3TAllyBaHHI YaCTHHH JIPOTY (Y MOMepeaHiX podoTax APIT mpe-
CTaBIISIBCSI MIPY’KHBO 3’€IHAHOIO CHCTEMOIO cTprkHel). ToMy 3’sBIs€TbCS HEOOXINHICTD MOLIYKY iH-
IIUX MOKJIMBOCTEH MOJICTFOBaHHS JTHHAMIKH, HAIIPUKIIA, 3a JOIIOMOTOI0 KBaTepPHIOHIB. MeToro crat-
Ti € MaTeMaTHYHA MOJIEh Ha OCHOBI KBAaTEPHIOHY 3 MOPIBHAHHAM ii y TIPOOJIEMHIN cHTyaIllii, B SKii
MOJIeTIb Ha OCHOBI KyTiB c()epUvHOI CUCTEMH KOOPAMHAT Ja€ HepeaiCTU4Hy TpaekTopito pyxy. [lepe-
BIpUTH MaTeMaTHYHY MOJIEIb 3alPOIIOHOBAHO Ha TipOCKOI — MPOCTOMY MEXaHi3Mi 31 CKIIAIHOIO JTU-
HaMIKOIO 1 OPTOTOHAIBHICTIO €JIEMEHTIB (SKa TaKOXK MOXe OyTH BHKOPHUCTAHA TSI MOJICITIOBAHHS KPY-
YEHHSI IPOTY).

INpockon mpencTaBIeHo CHCTEMOIO 3 TPHOX CTPHIKHIB, OAMH 3 SIKMX € BIiCCIO TIPOCKOIA, a Ba
HIIMX 3epKaIbHO-OPIEHTOBAHUX CTPHIKHS OPTOTOHAJIBHO MpUETHAHI 10 nepiuoro. [lepmmii cTprkeHb
Ma€e MOXIIUBICTh 0OepTaTHCs SIK HABKOJIO CBOET BiCi TaK 1 HABKOJIO BUTBHOTO KiHIIS, SIKUI HE PyXaeThCs
y mpoctopi. Pagiyc-BekTopu TppOX CTpMIKHEH BHU3HAUEHO TaK, 10 YMOBA OPTOTOHAIBHOCTI BUKOHY-
€THCSI aBTOMAaTHYHO y PIBHAHHAX pyXy. Y HepIIiii MaTeMaTH4HIA MOJeNi y3araJbHEHUMH KOOpAWHA-
TaM# 00paHO KOMITOHCHTH KBAaTEPHIOHY 1 KYyT 00epTaHHs HABKOJIO z-Bici. Y JpyTiit Momeni y3arajibHe-
HUMH KOOpJMHATaMU € 3CHITHUH, a3MMYTaIbHUHA i KyT BJIAacHOTO oOepraHHs. J{MHaMika TipockKoIry
BU3HAYA€THCS piBHAHHAME Eitnepa-Jlarpamka, At SKuX MOJAQHO BHPa3u KIHETHYHOI Ta MOTEHIIHHOI
eHeprii. B pe3ynpTaTi oftepykaHo CHCTEMY JIIHIHHUX anreOpaidHuX piBHSIHB BITHOCHO IMPUCKOPEHD, SKa
PO3B’A3y€EThCSt METOJIOM XO0elbKoro. [104aTKOBIMH YMOBAaMH € PO3TaIllyBaHHS TipOCKOIA Y TUIOLIHHI
X-Y 3 Biccro 00epHEHOI0 Ha KyT 45° HaBKOJIO z 1 IIBUIKICTIO BiacHOro od0epranHs y 1 pan/c. [Tommi-
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Ky 0COOJIMBO BUJIHO HAa PUCYHKAaX Yy MOMEHT 3MiHU 3HAKy X-KOMIIOHEHTH BekTopa Bici. Takox 3moje-
JTHLOBAHO BiTOME SBHIIE MPEIECii TipOCKOIa, IPUIOMY SK MOKa3aHO Ha PUCYHKAX IMIBUAKICTH Mperecii
3MEHIIYETHCSI Y BIAMOBIL HA 301IBIICHHS BJIACHOTO 00EPTAaHHS T1POCKOITY.

OTke BU3HAUCHHS JMHAMIKM TBEPJOTO TiJIa HA MPHKIIA] TiPOCKOITY 3a JIOTIOMOTOK0 KBaTEpPHi-
OHY Mae€ OLIBIT YHCETFHO CTaOlIRHUIN pe3yibTaT, Xo4a i moTpedye 4 piBHAHHS Ha KBATEPHIOH, IPOTE
X CKIIQ/IOBI € JIETHIMMU Y TOPIBHSIHHI 3 TPHTOHOMETPUYHUMH OTIepaHaMu APYyroi Mojelni. Y MaiOyT-
HiX JIOCIII/PKEHHS yMOBa OJIMHUYHOI HOPMHU MOXE OYTH TaKOXK TOYHO BpaxOBaHa y PIBHSHHSIX PYyXy
BUKOPHUCTOBYIOUH TPH IMAPAMETPH, aJe 33 PaXyHOK YCKIaJHEHHS Y BUIJIS/I oneparlii JiIeHHS.
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