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ESTIMATION OF COMPUTING ALGORITHMS QUICKLY DEVELOPMENT
BY USING HIGH-PRECISION ARITHMETIC SOFTWARE

One of the ways to reduce the computational error of computer simulation results is the use of
software tools implemented in specialized libraries of high-precision arithmetic of modern universal
high-level programming languages, which is associated with a significant increase in the duration of
the computational experiment. This paper is devoted to the study of the degree of influence of a given
computational accuracy on the speed of the software implementation of a method for solving a SLAE
of a different order and with different digit capacity of coefficients using modern means of high-
precision computation of the Java language.

Keywords: computational error, high-precision computational tools; computation speed;
software implementation, SLAE solution.

OOHUM 3 HANPAMKIE 3HUIICEHHS 0OUUCTIO8ANLHOI NOXUOKU pe3yIbmamie KOMN'1omepHo2o Mo-
0eNi08anHs € BUKOPUCIAHHS NPOSPAMHUX 3AC0018, peali308aHux 6 cneyianizosanux Oibiiomexax u-
COKOMOYHOI apu@dmemuru Cy4acHux YHiGepCaibHux MO8 NPOSPamy8aHHs GUCOKO20 PIGH, W0 N0G's13a-
HO i3 3HAYHUM 30ITbUIEHHAM MPUSATOCTI 00UUCTI08ANIbHO20 excnepumenmy. ChpaedicHa poboma npu-
césa4eHa 00CIONHCEHHIO CMYNeHs 6NIUBY 3A0AHOI 00UUCTIO8ANbHOI MOYHOCMI HA WBUOKOOII0 Npo2pam-
Hoi' peanizayii memooy piwenus CJIIAP piznozo nopsaoky i 3 pi3How po3psoHicmio Koeiyienmie npu
BUKOPUCIAHHI CYYACHUX 3AC00I8 8UCOKOMOYHUX 0OUuUCIenb Mosu Java.

Kniwouoei cnoea: obuucnosanvua noxubka;, 6uUcoKOmMouHi 3acobu 0Ouuciensb; weuoKicms 0o-
YUCeHb; npoepamua peanizayis, yucenvre piuenus CJIAP.

Formulation of the problem

The modern development of computer technology and computer modeling practically does not
leave room for expensive and difficult to carry out physical experiments. That is why a computational
experiment has become the most widespread and relevant method of studying all kinds of objects and
processes in engineering and technology.

The solution of modern problems, formalized in the form of mathematical models, requires re-
source-intensive calculations over huge data arrays, the processing of which involves a colossal
(sometimes even unacceptable for a particular computing architecture) number of iterations. In calcu-
lations with limited bit depth (and most modern computing systems are built on the basis of CPUs that
support 64-bit machine arithmetic of the IEEE-754 standard [1] with 53 digits of the mantis), a round-
ing error can occur at each calculation step. At the same time, the accuracy of machine calculations
becomes unsatisfactory, and the computational error becomes a determining factor in obtaining ade-
quate results of computer modeling.

Thus, the researchers are facing the urgent task of reducing the size of the computational error
associated with the limited representation of chips in the computer, which, in turn, is associated with a
significant increase in the duration of the computational experiment and a decrease in its efficiency.

Analysis of recent research and publications

One of the modern ways to improve the accuracy of calculations is the 128-bit IEEE-format,
in which the mantissa field is expanded to 113 bits. However, hardware support of this format is very
expensive [2].

A more common way to reduce computational error is to use software tools implemented in
specialized libraries of high-precision arithmetic of modern high-level universal programming lan-



34 Maremarnune MozpentoBaHus Ne 2(41) 2019

guages. So, now a lot of software packages have been developed that provide both enhanced (128- or
256-bit arithmetic) and arbitrary computational accuracy.

Currently, there is a fairly wide range of such tools, the most famous of which are the follow-
ing.

1. QD [3] — an advanced precision package that supports two data formats: double-double
(mantissa 106 bits or approximately 32 decimal digits) and quad-double (mantissa 212 bits or approx-
imately 64 decimal digits); It has high-level interfaces of the C ++ and Fortran-90 languages, which
ensures the conversion of existing programs with minimal change in the source code.

2. ARPREC [3] — a package of arbitrary accuracy, including arithmetic calculation proce-
dures, as well as many algebraic and transcendental functions; supports calculations with real, integer
and complex numbers; has C ++ and Fortran-90 interfaces.

3. GMP [4] — a library of arbitrary accuracy, which has an extensive set of optimized proce-
dures to support calculations with integers, rational and real numbers; rounding modes compatible
with IEEE-754 specifications are not supported; has a C language interface.

4. MPFR [5] — GMP extension that provides multiple precision calculations with the possibil-
ity of using one of four rounding modes that comply with the IEEE-754 standard; accuracy can be set
separately for each variable; Normalized numbers are not supported. released under the GNU LGPL
license; possesses high speed in comparison with many analogs.

5. NTL [6] — portable C ++ — a library for solving problems of number theory, including da-
ta structures and algorithms for processing integers of any length, vectors, matrices and polynomials
over integers and over finite fields, as well as arbitrary precision floating-point arithmetic; NTL's vir-
tue is its consistent interface with a wide variety of classes representing mathematical objects.

6. MPFUN2015 [7] — a package of arbitrary accuracy, which is a development of MPFUN90,
having a Fortran-90 language interface; partial support for the C ++ interface is planned; supports real
and complex data types; the main declared advantages of the package include streaming security, to
maintain acceptable performance when operating in extremely high accuracy, algorithms based on fast
Fourier transform are used; the package includes routines for calculating algebraic, transcendental and
some special functions, such as gamma function, incomplete gamma function, zeta function.

However, the classical methods of long arithmetic [8], which underlie the majority of well-
known packages (GMP, MPFR, ARPREC, QD, NTL, etc.), lead to fairly slow and inefficient imple-
mentations. The fundamental reason for this is the emergence of hyphenation chains, due to which
multi-bit mantissa processing algorithms become computationally complex and do not parallelize. As
a result, high-precision calculations are accompanied by a large investment of time and inefficient use
of computing resources.

Study goal statement

In [9—13], studies of the effectiveness of modern software tools for supporting high-precision
calculations with real numbers for C / C ++ languages are quite widely presented. Other, listed above,
software tools for the implementation of high-precision arithmetic are practically not considered in
scientific publications.

The aim of this work is to study the degree of influence of a given accuracy on the speed of
computational algorithms using modern means of high-precision arithmetic of the Java language. Java
is selected as the most popular and demanded (according to the current ratings like TIOBE [14] or
domestic DOU.UA) programming language.

Statement of the main material

To represent real numbers in Java, standard, hardware-supported, data types are
used — float (precision 23 bits, 7 decimal places) and double (precision 53 bits, 16 decimal places).

To implement arithmetic with the desired (specified) accuracy, Java introduced the specialized
BigDecimal class, which is a descendant of the java.lang.Number class and represents a floating-point
number of arbitrary length and accuracy. BigDecimal is located in the java.math package. Each object
of this class stores two integer values - the mantissa of a real number in the form of an object of class
Biglnteger and the non-negative decimal order of a number of type int. BigDecimal contains methods
that duplicate standard Java arithmetic operations. When working with BigDecimal values, you can
specify the desired precision (i.e., the number of decimal places).
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When conducting a computational experiment [15], the time of the software implementation
of the classical right-sweep method [16] was studied, which is a special case of the Gauss method ap-
plied to systems of linear algebraic equations (SLAE) with a three-diagonal matrix. Such systems are
often found in the numerical solution of boundary value problems for differential equations of the
second order in various problems of mathematical physics, in modeling some engineering problems,
and also when solving problems of spline interpolation.

In the process of research, the matrix size was varied in the range 1 4 103-2 Y 107, and the
coefficients of the equation were generated randomly (taking into account the conditions for the di-
agonal prevalence of the matrix). In comparative calculations, we used standard valid data types: float
(precision 23 bits, 7 decimal places), double (precision 53 bits, 16 decimal places) and the BigDecimal
data type with similar precision (8 and 16 decimal places).

Computational experiments were carried out using the infrastructure shown in table 1.

Table 1. Computing experiment infrastructure

Processor (CPU) Intel Core 15-7400 (4 cores, 3-3.5 GHz),cache 6 MB
Kingston HyperX DDR4 (8GB, 2133 MHz, 17000 MB/s) +
M RAM
emory (RAM) Kingston HyperX DDR4 (8GB, 3200 MHz, 23500 MB/s)
Operating system (OS) Microsoft Windows 7

Development Environment (IDE) | Eclipse Java 2018-12
Development Kit (JDK) 1.8

So, the study of the solution time for SLAEs (Time, s) in the above range of order (n) using
standard valid data types showed (Fig. 1) a slight (3 Y 10-6—4 Y 10 Y 2 s) linear reduction in the time
of the program implementation of the sweep method for the hardware-supported double type in com-
parison with the less accurate standard type float.
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Fig. 1. Dependence of the solution time on the SLAE order for standard data types

In this case, the ratio of the calculation time when using the more accurate of these types to the
calculation time for the less accurate type in the indicated range of order SLAE was 1.02—1.31 in the
absence of a linear relationship.
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In turn, if we compare the specialized types of Java software support BigDecimal-8 and Big-
Decimal-16, similar in accuracy (Fig. 2), then the software implementation of the sweep method for
the more accurate of these types compared to the less accurate in the given the range of order changes
of SLAE was 2.3 Y 10-2-3.44 101 s.
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Fig. 2. The dependence of the solution time on the SLAE order for specialized data types

Moreover, the ratio of the calculation time when using the more accurate BigDecimal-16 type
to the calculation time for the BigDecimal-8 type in the indicated range of the order of SLAEs was
1.5-7.3 in the absence of a linear relationship.

However, the most interesting results in this study are the results presented in Fig. 3, namely,
the ratio of the speed of the standard hardware and specialized software implementation of calcula-
tions with huge (up to 2 U 107) arrays of high-precision data.
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Fig. 3. Dependence of the performance drop coefficient on the order of SLAE for specialized
data types

So, performance drop factors:
KBigDecimal—8 = TBigDecimal—S /Tﬂoat >
KBigDecimaZ—16 = TBigDecimal—16/Tdouble >
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where,, and - the SLAE solution time for the types BigDecimal-8, BigDecimal-16, float and double,
respectively, significantly increase with the accuracy of the type used, i.e. there is a significant (maxi-
mum 374 times) decrease in the speed of the computational experiment. The calculated value in the
studied range of changes in the order of the matrix was 48—193, and 131—374.

The present studies did not reveal a strict mathematical relationship between the decrease in
the speed of the algorithm for the numerical implementation of the sweep method and the order of
SLAE:s, and this dependence becomes more pronounced with an increase in n from 25 Y 105.

Conclusions and prospects for further research

The use of modern software to improve the accuracy of computer modeling is associated with
a significant (several hundred times) reduction in the speed of a numerical experiment, which requires
a choice between the speed of implementation of the computer model and its acceptable adequacy.

It is planned to further develop similar studies to ensure arbitrary (higher — from 16 decimal
places) accuracy of the processed data, as well as the study of other hardware and software tools for
implementing resource-consuming computational processes.
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OIIHKY MIBUIKOJII OBYUCIIOBAJIBHUX AJIIOPUTMIB ITPA
BUKOPUCTAHHi IPOI'PAMHUX 3ACOBIB BUCOKOTOYHOI
APUOMETUKHA

Kyaskosckas LI., Kyabkosckuii O.0., Cyraas €.0.

Pedepar

CydacHuil po3BUTOK OOYHMCIIOBAIBHOI TEXHIKM Ta KOMIT'FOTEPHOTO MOJIENIOBAHHS MPAaKTUYHO
HE 3aJIMIIAI0Th MICIS U1l AOPOTUX 1 BAXKKO 3A1HCHEHHUX (i3UYHUX ekcrepuMeHTiB. Came ToMy 004u-
CITFOBAJIbHUH €KCIIEPUMEHT CTaB HAHOUIBIN MOUIIMPEHUM METOJOM JOCIIIPKEHHS BCUISKAX OO0'€KTIB i
MIPOIIECiB B TEXHIIl 1 TEXHOJOTISAX. B maHWii 9ac mepen JOCHiTHUKAMU CTa€ aKTyaabHOIO 3a7ada 3HU-
JKCHHSI PO3MIpiB OOYUCIIOBANBEHOI MOXHOKH, MOB'A3aHOI 3 OOMEXKEHICTIO TPE/ICTABICHHS YHCEN B
EOM, 1m0, B cBOIO Uepry, MOB'sA3aHO i3 3HAYHUM 30UTBIIEHHSIM TPHUBAJIOCTI OOUUCITIOBAIILHOTO EKCIIe-
PUMEHTY 1 3HIDKEHHSIM HOTO e(DeKTHBHOCTI.

MerToro 1aHoi poOOTH € JOCIIIPKEHHS CTYIICHsI BIUIUBY 33J]aHOi TOYHOCTI HA MIBUIKOIIIO 00-
YHCITIOBAJIBHUX AJITOPUTMIB MPH BUKOPUCTAHHI CYyYaCHUX 3aC00iB BUCOKOTOYHOI apU(METHKH MOBH
Java.

[Ipu mpoBeaeHHI 00YUCITIOBAIEHOTO EKCIIEPUMEHTY JOCTiKYBaBCs dac MpOTrpaMHOI peaiiza-
1[ii KJIACHYHOTO METOJy PaBOi MPOTOHKH, 110 3aCTOCOBYETHCS JI0 CUCTEM JIIHIHHUX alnreOpaiyHux pi-
BHSIHB 3 TPUIarOHAJILHOI MaTPHIIEIO.

V mpomeci xocmimKeHs po3Mip MaTpHui 3MiHoBanH B giamasoni 1410°—24107, a snaucHHs
Koe(iLi€HTIB PIBHSIHHS TeHEPYBalll BHUIAJAKOBUM YMHOM (3 YpaxyBaHHSIM YMOBH JiarOHaJbHOTO Iie-
peBakaHHs MaTpulli). Y MOPIBHSUIBHUX PO3PaxyHKaX BUKOPUCTOBYBAIM CTAaHAAPTHI JIIHCHI THUIK aa-
uux: float (TounicTs 23 Oita, 7 AecsITKOBUX 3HaKiB), double (TounicTh 53 OiTa, 16 MECATKOBUX 3HAKIB)
i Tun naHux BigDecimal 3 ananmoriyHuM# TOYHOCTSMU (8 1 16 NECATKOBHUX 3HAKIB).

BukopucranHsi Cy4yacHUX MPOTPaMHUX 3aCO0IB IMiJBUIICHHS TOYHOCTI KOMITHOTEPHOTO MOJIC-
JIOBaHHS TIOB'A3aHE i3 3HAYHUM (B KiJIbKa COTEHb Pa3iB) 3HIKEHHSIM IIBUIKOCTI YHCEIHHOTO EKCIle-
PUMEHTY, III0 BUMara€ BUOOPY MK IIBHAKOIIEIO0 peaiizallii KOMI'TOTepHOI MoJemi 1 ii MpuHHATHOIO
a7IeKBaTHICTIO. [1J1aHy€eThCs MOAAIBININN PO3BUTOK aHAJIOTIYHMX JTOCIIKEHD JUIs 3a0e3MeUeHHs JIOBI-
TBHIN (ORI BUCOKOIO — BiJl 16 IEeCATKOBUX 3HAKIB) TOYHOCTI OOpOOTIOBAaHUX aHUX, a TAKOXK BUKO-
pUCTaHHS 1HIMX alapaTHHUX 1 IPOTPaMHUX 3ac00iB peaizailii mogiOHIX 00YHCITIOBATHFHUX MIPOIIECIB.
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