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MATHEMATICAL MODELING OF DIFFUSION LAYERS FORMATION USING
COMPOSITIONAL SATURATING BATCHES CHARGES

The problem of chemical-thermal treatment of steel using composite saturating charge ECD
(Energy component of diffusion). In the system under consideration, a complex of processes occurs:
wave propagation in the charge layer on the steel surface, non-stationary heat removal into the inte-
rior of the sample, and non-stationary diffusion of atoms of the saturating element deep into the steel
under non-isothermal conditions. In this case, that part of the surface from which the diffusion satura-
tion of steel occurs expands as the wave moves. In this work, the thermal conductivity A is not an addi-
tive, but a structure-dependent quantity. However, for simplicity, in the area where ECD occurs, the
additive formula is usually adopted: A = A(1-1) + A,n, and for steel A = Ay. For the i-th individual
substance, a linear dependence of thermal conductivity on temperature was used: 2(T) = A9 + ArT.
After the ECD wave has reached the edge, i.e. the charge has fully reacted, the diffusion of atoms from
the surface and conductive heat transfer in the steel continue during the holding time t,. This problem
is two-dimensional, nonstationary, and essentially nonisothermal.

Keywords: composite saturating charge, border conditions, energy component of diffusion;
conductive heat transfer; nonlinear unsteady equation.

Posenanymo 3a0auy npo ximixo-mepmiuniti 06pobyi cmani 3 GUKOPUCTNAHHAM KOMRO3IYIUHO20
HaciuysanvHozo cepedosuwya 3 Buxopucmanna ECD (Energy component of diffusion). ¥V oaniti cuc-
memi 8i00)8aEMbCst KOMNJIEKC NPOYECi8. NOWUPEHHS X8UILE 8 WLAPI WUXMU HA NOGEPXHI CMAIU, HeCcma-
YioHapHuil Meniosiogio eaaub 3paska i HeCmayioHapHa OuQy3isi amomie HACUUYE ereMeHma 62nud
cmanu 8 neizomepmiunux ymogax. Ilpu ypomy ma wacmuna nogepxui, 3 aKoi tide oughysitine HacuueHms
CIMAnu, po3uuprOEMsCs 8 Mipy pyxy xeuni. B pobomi mennonpogionicme A € He a0umusHoi, a cmpyk-
mypHo-3anedicHoi seauuunor. OOHax onsi npocmomu 6 obaacmi, 0e npomixae ECD, 3azeuuaii npuii-
maroms a0oumusHyio gopmyny: A = Aaq(1-n) + A,.n, a ona cmani A = Ay A i-20 inougioyanvnozo
PEUOBUHU BUKOPUCIOBYBANU JIHIUHY 3ANeNCHICMb Menionpogionocmi 6io memnepamypu. A(T) = Ay +
ArT. Iicia moeo, sk xeuns ECD 0obiena 0o kparo, mobmo wmuxma nosHicmio npopeazysand, ougpysis
amomig 3 NOBEPXHi i KOHOYKMUBHUL MENJIONEPEHOC 8 CIMAIU MPUBATOMb NPOMALOM YACY GUMPUMKU L),
Taxe 3a60anus € 080BUMIPHOL, HECMAYIOHAPHOL | ICMOMHO HEI30MEPMIUHOI.

Knwuoei cnosa: xomnosuyiiine Hacuyyioue cepedosuuje; SpanuiHi yMOSU, eHepeemuund
CKA008a Ou@ysii; nposioHUll Menjio0OMiH, HeliHilHe HeCMAYIOHAPHE PIGHAHHSL.

Problem’s Formulation

Obtaining diffusion protective layers with the use of composite saturating media — a new type
of CHT which uses saturating elements, which in one technological cycle provide the required type of
alloying with a minimum time of their formation. Diffusion protective layers obtained using composite
saturating charge (CSC) are an effective method of increasing the reliability of machine parts and
process equipment by creating on the surface of the machined parts layers doped with aluminum, va-
nadium, titanium, molybdenum, boron, tungsten, which have a unique set of physical and chemical
properties.

Let us consider the problem of chemical-thermal treatment (CHT) of steel using a composite
saturated charge using ECD (Energy component of diffusion). The situation under consideration is
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shown schematically in Fig. 1. A layer of reactive charge ABCD with a thickness of 4., = AD is lo-
cated on the surface of a steel sample CDEF with a thickness of A, = DE; the length of the sample
with a layer of charge L = AB = DC. The Ox xis is directed from left to right — along the motion of the
ECD wave, and the Oy — axis — into the depth of the steel. The front of the ECD wave is shown to be
curved, since heat removal into steel will inevitably slow down its movement from the side adjacent to
the DC surface.
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Fig. 1. Scheme of the saturation process in a composite saturated medium

At the initial moment of time =0 the sample and the charge are at a constant temperature 7;
this temperature is higher than room temperature, but lower than that at which an exothermic reaction
can begin in the ECD charge. On the left edge of 4D, i.e. at x=0, y=[0, D] at the initial moment of time
=0 the ECD charge is ignited due to external heating by an incandescent coil with a constant tempera-
ture T, for a time #;,, — until a combustion wave is formed, propagating through the layer charge along
the Ox axis. Further, in section 4D external heating stops. For simplicity, it is assumed that the sample
surfaces AB, BF, ED and EF are thermally insulated, i.e. there is no heat exchange with the environ-
ment; The same applies to the surface AD after the end of the ignition, i.e. for # > t,,. During an exo-
thermic reaction, active atoms of a saturating element are formed in the charge layer, which diffuse
deep into the steel from the DC, boundary, while ahead of the combustion wave front, i.e. where the
reaction has not yet taken place and active atoms have not been formed, diffusion saturation does not
occur. The heat from the afterburning zone of the ECD wave is partially removed deep into the steel
sample.Thus, a complex of processes occurs in the system under consideration: propagation of the
ECD wave in the charge layer on the steel surface, unsteady heat removal into the interior of the sam-
ple, and unsteady diffusion of atoms of the saturating element deep into the steel under non-isothermal
conditions. In this case, that part of the DC surface from which the steel diffusion saturation expands
as the ECD wave moves. After the ECD wave has reached the BC edge, i.e. the charge is completely
burnt, the diffusion of atoms from the DC surface and conductive heat transfer in the steel continue
during the holding time ¢,. This problem is two-dimensional, nonstationary, and essentially noniso-
thermal.

Presenting main material

For the mathematical formulation of the above physical problem, it is necessary to make a
number of assumptions that do not reduce the level of generality of the problem and do not distort the
physics of the process:

- on the DC surface (boundary steel / ECD charge and steel / ECD product) there is an ideal
thermal contact, i.e. there are no discontinuities (pores, cracks) or intermediate layers of substances
with low thermal conductivity (for example, scale);

- the concentration of the saturating element along that part of the DC surface where the exo-
thermic reaction has occurred is the same and does not change over time; it is equal to zero where the
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reaction has not yet occurred, i.e. ahead of the ECD wave front; after the completion of the reaction
over the entire DC surface, this concentration is also taken constant during the entire holding time #;;

- at the DC boundary, we take an ideal diffusion contact, i.e. there are no intermediate layers
or impurities that could slow down the transition of active atoms formed during ECD to the surface
layer of steel.

The kinetics of the interaction of reagents in the ECD wave is very complex and insufficiently
studied [1, 2]. The same applies to the kinetics of generation of active atoms in the ECD wave, which
will diffuse into steel. In this regard, we will describe the kinetics of interaction and heat release in the
ECD wave using the relatively simple Khaikin-Merzhanov model [3—7], and consider the first-order
reaction.

The propagation of the ECD wave in the charge layer ABCD and the conductive heat transfer
in the steel sample CDEF can be described by the same two-dimensional non-stationary nonlinear eq-
uation of heat conductivity with coefficients depending on the coordinates x, y and on the temperature
T; in this case, the term describing the rate of heat release in the CDEF region will be equal to zero:

a _of(,d\ o, _ on
pc—d = dc(l_ch + ﬁy(l_ﬁyJ +F, F pp,,Q—d , (1)
7;7=(1—77) ko exp(—%) )

Here T — is the temperature [K], ¢=c(x,y,7) — is the mass heat capacity [J/(kg-K)],
p=pxy,T) — is the density [kg/m’], 1= A(x,y,]) — is the thermal conductivity coefficient
[W/(m:K)], n — is the degree of conversion in the ECD reaction (dimensionless quantity), < 17 <1, n
— is the order of the reaction (as noted above, n = 1), Q — is the heat release of the reaction per unit
mass of the product [J/kg], ko — is the pre-exponent in the Arrhenius expression for the reaction rate
[c'], E, — is the activation energy of the gross reaction in the ECD wave [J/mol], R — is the univer-
sal gas constant,, R=8,314 J/(mol-K), the subscript “pr” means the reaction product.

Formula (1) is a nonlinear non-stationary heat conduction equation, in which the last term on
the right-hand side (value F) has the meaning of a heat source (rate of heat release) due to the occur-
rence of a heterogenecous exothermic reaction. The ordinary differential equation (2) describes the
reaction rate according to the Khaikin-Merzhanov macrokinetic model.

Let us describe the parameters included in the heat conduction equation with a source (1). The
amount of heat release O = —AH,, where AH, — is the enthalpy change for an exothermic reaction
(AH,<0), it can be determined on the basis of thermodynamic reference books, for example [§—12].
In the area ABCD, i.e. for 0 <x < D, 0 <y < B, the heat source F is nonzero and the degree of conver-
sion 1) is determined from the solution of equation (2). In the CDEF (for D <x < E, 0 <y < B) in equa-
tion (1) F=0, =0, i.e. it is solved without a heat source and is an ordinary two-dimensional nonli-
near equation of heat conduction, and equation (2) vanishes identically, i.e. it is not calculated.

Heat capacity ¢ and density p are additive quantities, therefore, in equation (1) is determined as
follows:

- in the domain ABCD: ¢ = c,(1-n) + ¢c,,n, p= pa(1-1) + ppr17

- in the CDEF: ¢ = ¢y, p = Pst>
where the subscripts ch, pr and st stand for charge, product of CBC (product) and steel (steel). For
each individual substance i (charge component, reaction product, steel or pure iron), the temperature
dependence of the heat capacity is usually written in the form ¢(T) = 4 + BT + CT > + DT where the
values of the coefficients A, B, C and D are available in thermodynamic reference books [8—12].

Thermal conductivity A is not an additive, but a structure-dependent quantity. However, for
simplicity, in the ABCD region, where ECD occurs, the additive formula is usually adopted:
A= Aa(1-n) + 4,1, and for steel (region CDEF) A = Ay. For the i-th individual substance, a linear
dependence of thermal conductivity on temperature is often used: A(7) = Ay + A,T.

The initial conditions for the heat conduction equation with a source (1) and kinetic equation
(2) have the form
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T(x,y,t=0) = Ty = const, m(x,y,=0)=0. 3)
Since the initial temperature Ty is chosen so that at it the reaction rate is negligible, then when
numerically solving Eq. (2), one can use the “trimming” of the Arrhenius exponent: at T npu 7<T,
dn/dt=0.
Let us write the boundary conditions to the heat conduction equation (1). During firing t<t;, at
the edge x=0, 0<y<D condition of the first kind is set:
T(x=0, 0<y<D, t < t;y) = T}, 4)
On all other edges of the sample during the entire process time (£>0), as well as on the edge
AD (x=0, 0<y<D) after ignition (#>t,;) a boundary condition of the second kind is set (absence of heat
exchange with environment):

90 00 Ly, (5)
Ox x=0 ox x=B

— /‘La_T = _,‘La_T =0. (6)
oy y=0 oy y=E

Thus, the thermal problem for the considered situation is formulated.

The diffusion equation in steel in the CDEF region (see Fig. 1) is written as Fick's II law, tak-
ing into account the Arrhenius dependence of the diffusion coefficient D of the saturating element at
each point on temperature:

EZE(D£)+£(D£J | -
a & & & &
D =D, exp(— %} ®)

Here C — is the concentration of the diffusing element, £, — is the activation energy of its
diffusion in steel (or pure iron), Dy — is the pre-exponential factor; the values of Ep and D, for the
diffusion of many elements in - and y-Fe are given in the reference literature, for example [13].

The initial condition to eq. (7) has a simple form

Clx,y,r=0)=0. 9)

The boundary conditions for the diffusion equation (7) are as follows. Since there is no mass
transfer of the steel sample with the environment, at the boundaries DE, CF and EF (see Fig. 1), we
write down conditions of the second kind, which are similar to expressions (5) and (6):

- Da_c = _Da_c =0, (10)
ox x=0, ye DE Ox x=B, yeDE
_p% =0. (11)
ay y=E, xeAB

On the CD border, the situation is different. The ECD wave moves along it in the reaction
mixture in the direction of the Ox axis, and active atoms of the saturating element are generated in the
region behind its front (in the zone of thermal reaction and the zone of afterburning of the ECD wave).
Since we consider the ideal diffusion contact of the steel sample with the region ABCD, the boundary
conditions of the first kind should be set at the DC boundary: C (y=D,x <P)=C,; and C (y =D,
x 2P) =0, where C; — is the concentration of the saturating element formed as a result of ECD, P(r)
— is the current coordinate of the combustion front on the surface DC, which can be defined as a point
where r7=0,5 [[7]].

But here the following circumstance arises: when the front is displaced to the next point along
the Ox axis, the boundary condition in it will change abruptly, which can lead to the cycling of the
computer program in the numerical solution of the above problem. In addition, in the ECD wave, in
front of the narrow zone of rapid reaction, there is a wide Michelson zone, in which the charge is
heated by the heat flow from the reaction zone. For the considered two-dimensional problem, the heat
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from the specified zone will be partially removed to the surface region of the steel located in front of
the ECD wave front, and then the diffusion coefficient D there will increase. Then, at a low velocity of
propagation of the ECD wave, a situation is theoretically possible when the atoms of the saturating
element diffuse forward along the Ox axis from the surface zone of the steel located behind the ECD
front. This, again, will lead to significant difficulties in the numerical solution of the problem. There-
fore, it is better to set boundary conditions of the third kind, which in the situation under consideration
we will write in an unusual form, taking into account the motion of the combustion front along the DC
line:

~D— =ch7|x, y:E(cs —c|x, y:D), (12)

where 7 v y=E and C . — respectively, the degree of conversion and concentration of the dif-

y=D
fuser in steel at a point with the current coordinate x at the boundary DC (i.e., at y=D), and the parame-
ter K¢ is the coefficient of mass transfer between the steel surface and the reacted charge. At a high
value of K the concentration of diffusant in the steel at a given point C—C;, and then the condition of
the III kind (11) will be reduced to the condition of the I type (constant concentration at a given point).

Thus, the diffusion part of the problem is formulated completely. The heat conduction equa-
tions with a source (1), (2) and initial (3) and boundary conditions (4)—(6) must be solved together
with the diffusion equation (7) with the initial condition (9), boundary conditions (10>—(13) and ex-
pression for the diffusion coefficient (8).

Equations in dimensionless form: instead of an infinite region, we will consider a finite one
with the size X,,,.. To develop a method for the numerical solution of the Stefan problem, it is neces-
sary to bring all equations to a dimensionless form:

x=X/Xgy, Ymax = Xmax / Xo» 7=t/tg, 0=(T=Ty)/ AT, AT =Ty — T,

P =P /pO’ Ep,k =Cpk /CO’ lp,k z/ip.k /ﬂ()’ k=1,s,
where ¢, and X, — are the characteristic scales in time and distance, po, co and 1o — are the characte-
ristic values of density, heat capacity and thermal conductivity, respectively, x and 7— are the dimen-
sionless spatial coordinate and time, respectively, §— is the dimensionless temperature, 7,,,, — is the
maximum the possible temperature of the melt in the process under consideration, p, ¢ and A —

(13)

dimensionless (scaled) density, heat capacity and thermal conductivity, respectively.
Conclusions

Thus, the diffusion part of the problem is formulated completely. The heat conduction equa-
tions with a source (1), (2) and initial (3) and boundary conditions (4)—(6) must be solved together
with the diffusion equation (7) with the initial condition (9), boundary conditions (10>—(13) and ex-
pression for the diffusion coefficient (8).

In the future, it is necessary to build a finite-difference scheme, calculate the running coeffi-
cients and numerically solve the finite-difference equations by the iteration method.
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MATEMATHUYHE MOJEJIOBAHHS ®OPMYBAHHSA JITU®Y3IMHUX IIIAPIB
3 BAKOPUCTAHHAM KOMIIO3UIIIMHOIO HACUYYBAJILHOTI'O
CEPEJOBHMIIIA

Cepena B.I1., Xuna B.b.,. Kpyrisik I.B, Cepena /I.b.

Pedepar

PosrisiayTO 3amavy mpo ximiko-TepMiuHiii oOpoOui cTali 3 BUKOPUCTaHHSAM KOMIO3ILIHHOTO
HaciuyBanbHOro cepenopuina 3 Bukopucranus ECD (Energy component of diffusion). ¥ nawniit cuc-
TeMi BiZOyBa€eThCA KOMIUIEKC MPOLIECIB: MOMMPEHHs XBUJIl B LIapi MIWXTH HA MOBEPXHI CTaIH, HECTa-
LiOHApHUH TEIUIOBiABIA BIIIMO 3pa3Ka i HecTalioHapHa Au(y3is aTOMIB HACHYY€ eleMeHTa BIiub cTa-
T B HEi30TepMiuyHUX yMoBax. IIpu mboMy Ta yacTWHa MOBEpXHi, 3 SAKOI Hae aAudysiiiHe HaCHYCHHS
CTaJIH, PO3IMIMPIOETHCS B MIpy pyXy XBHIIi. B po0OTi TemonpoBigHicTs A € HE aIUTHBHOI, @ CTPYKTYp-
HO-3aJeKHOI BennunHoo. OHaK Ui IpOCTOTH B obnacTi, Ae nportikae ECD, 3a3Bu4ail npuiiMaioTh
anauTHBHYI dopmyny: A = Au(1-n) + A,n, a qus crani A = Ay. Jlng i-ro iHAUBIAYalbHOTO PEYOBUHU
BHKOPHUCTOBYBAJIH JIHIHHY 3aJIeKHICTh TerionposiaHocTi Bin temnepatypu: A7) = Ao + ArT. Iicas
toro, Ak xBuist ECD moGirna go kparo, TOOTO IIMXTa MOBHICTIO MpopearyBaia, Judy3is aToMiB 3 1O-
BEpXHIi 1 KOHAYKTUBHHUH TEIUIONEPEHOC B CTAIM TPUBAIOTH MPOTATOM Yacy BUTPUMKH f;,. Take 3aBAaH-
HS € IBOBUMIPHOI, HECTAL[IOHAPHO] 1 ICTOTHO HEI30TEPMIYHO].

Kineruka B3aemomnii pearentiB B xuiii ECD HOCHTH HOCUTH CKIIAJHUI XapaKTep 1 € HEeTOCTaT-
HbO BHUBUYCHOI. Te caMe MOXHa CKas3aTy 1 JI0 KIHeTHUKHU reHepallii akTHBHUX aToMiB B xBwiti ECD, sxki
OyayTh TU(YHIYBaTH B CTalb. ¥ 3B'I3KYy 3 UM OyIEeMO OMHUCYBATH KiHETHKY B3a€MOIIi 1 TEIIOBHII-
nenns B xBuwii ECD 3 BUKOpHUCTaHHAM BITHOCHO MPOCTHH Mozeni XaikiHa-MepKaHoBa, 1 po3riisaaTu
peakuito [-ro mopsaky. [Nommpenns xsuni ECD B mapi KHC 1 koHgyKTHBHE TEIUIO IEPEHOC B CTaje-
BOMY 3pa3Ky MO>KHa OITMCATH OAHUM 1 TUM K€ JBOBUMIPHUM HECTAL[IOHAPHUM HETIHIHHUM PIBHSIHHSAM
TEIIONPOBIAHOCTI 3 KoeilieHTaMu, 3aJIKHUMHE Bl KOOPAWHAT X, ) 1 BiJ Temneparypu 7; Ipu IbOMY
YJIeH, IO ONHUCYE IBUAKICTh TEIUIOBUIUIEHHS, B 00J1acTi Oy/ie JOpiBHIOBATH HYJIIO.
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