DOI: 10.31319/2519-8106.1(46)2022.258346 УДК 532.59 В.В. Нарадовий, к.т.н., доцент, naradvova1986@gmail.com Д.С. Харченко, аспірантка, harcenkodiana5@gmail.com Центральноукраїнський державний педагогічний університет ім. В. Винниченка, м. Кропивницький

ДОСЛІДЖЕННЯ ХВИЛЬОВИХ РУХІВ У ТРИШАРОВІЙ ГІДРОДИНАМІЧНІЙ СИСТЕМІ «ШАР З ТВЕРДИМ ДНОМ – ШАР – ШАР З КРИШКОЮ»

Досліджується задача поширення хвиль у тришаровій гідродинамічній системі «шар з твердим дном – шар – шар з кришкою». Для першого наближення отримано дисперсійне співвідношення та дві пари коренів. Отримано вирази відношень амплітуд відхилень поверхонь контакту, які відповідають кореням дисперсійного рівняння. Залежності відношень амплітуд від різних фізичних параметрів графічно проілюстровані та проаналізовані.

Ключові слова: відношення амплітуд, хвилі, хвильовий рух.

The problem of wave propagation in a three-layer hydrodynamic system "layer with a hard bottom - layer - layer with a cover" is investigated. For the first approximation, the variance relation and two pairs of roots are obtained. The expressions of the relations of the amplitudes of the deviations of the contact surfaces, which correspond to the roots of the dispersion equation, are obtained. The dependences of the amplitude relations on different physical parameters are graphically illustrated and analyzed.

Keywords: amplitude ratio, waves, wave motion.

Постановка проблеми

Дослідження хвильових процесів у рідинах з різним типом стратифікації за густиною проводяться сучасними вченими в натурних умовах та експериментально за допомогою рідинних систем різної структури та за допомогою математичних моделей. Чисельний та фізичний аналіз таких моделей дозволяє не тільки зрозуміти реальні фізичні процеси у Світовому океані, а й слугують теоретичним доповненням для майбутніх експериментів.

Таким чином актуальним є дослідження проблеми поширення слабконелінійних хвильових пакетів у тришаровій гідродинамічній системі «шар з твердим дном – шар – шар з кришкою».

Аналіз останніх досліджень та публікацій

Дослідження хвильових процесів у стратифікованих рідинах у системах різного типу є предметом багатьох сучасних досліджень гідродинаміки.

У дослідженні [1] у наближенні Буссінеска розглядаються вільні внутрішні хвилі в двовимірному вертикально неоднорідному стратифікованому потоці з урахуванням обертання Землі. Рівняння для амплітуди вертикальної швидкості фіксованої моди внутрішніх хвиль має комплексні коефіцієнти; отже, власна функція і частота хвилі складні. Встановлено, що уявна частина частоти мала і може бути як позитивною, так і негативною. З цієї причини в залежності від хвильового числа і номера моди можливо як слабке затухання, так і слабке посилення хвилі. Потоки імпульсу вертикальної хвилі відмінні від нуля і можуть перевищувати відповідні турбулентні потоки.

У статті [2] досліджується проблема поширення та взаємодії хвиль вздовж поверхонь контакту у гідродинамічній системі «рідкий півпростір – шар – шар з твердою кришкою». Проаналізовано залежність відношення амплітуд хвиль на поверхнях контакту при різних геометричних та фізичних параметрах системи. Досліджено структуру хвильових рухів на поверхнях контакту.

У статті [3] досліджується явище, коли внутрішні хвилі описують (лінійний) відгук нестисливої стабільно стратифікованої рідини на невеликі збурення. Нахил їх групової швидкості щодо вертикалі повністю визначається їх частотою. Доводиться, що в цій критичній геометрії слабков'язкі і слабонелінійні хвильові рівняння насправді мають розв'язок, який добре апроксимується сумою падаючого хвильового пакета, відображеної другої гармоніки і деяких членів прикордонного шару.

У дослідженні [4] розглянута теорія тришарових стратифікованих за густиною ідеальних рідин з метою її узагальнення на випадок п-шарів. Основна увага приділяється структурним властивостям, особливо у випадку жорсткого обмеження верхньої кришки. Показано, що довгохвильова бездисперсійна межа являє собою систему квазілінійних рівнянь, що не допускають інваріантів Рімана. Також обговорюються межа Буссінеска і сімейство спеціальних розв'язків, недавно введених де Мело Віріссімо і Мілевським.

У дослідженні [5] розглядається поширення плоских капілярних гравітаційних відокремлених хвиль постійної форми в тришаровій постановці. Проміжна рідина вважається стратифікованою, а верхня і нижня — однорідними і нескінченно глибокими. Одна або обидві границі розділу схильні до капілярності. Дослідження може бути застосоване до випадку двох глибинних рідин, коли одна з них стратифікована поблизу границі розділу. Останнє формулювання має відношення до досліджень капілярних гравітаційних хвиль в перехідній області між морською водою і рідким вуглекислим газом в глибинах океану.

Показано, що в розглянутій постановці капілярно-гравітаційні відокремлені хвилі кінцевої амплітуди підкоряються інтегрально-диференціальному рівнянню, яке містить закони дисперсії Кортевега-де Фріза (KdV) і Бенджаміна-Воно (БО), а також специфічну нелінійність, що залежить від властивостей стратифікованого шару.

У роботі [6] було експериментально досліджено поширення високих внутрішніх відокремлених хвиль по великому трикутному гребеню в потоці стратифікованої рідини. Характеристики поширення піднесених ISW над гребенем були виміряні за допомогою приладу для вимірювання хвиль в реальному часі і велосіметрії по зображеннях частинок, відповідно.

У статті [7] для взаємодії з жорсткою пористою структурою у вигляді Т-образної перегородки в умовах плескання моделюється чисельна модель, що містить стратифіковані по щільності шари рідкої нафти і води в прямокутному резервуарі. Для відстеження еволюції міжфазної і вільної поверхневої хвилі з рівняннями Нав'є-Стокса і Брінкмана, які керують потоком нестисливої рідини і потоком через пористу область відповідно, використовується довільний метод Лагранжа-Ейлера.

Серія випадків установки моделюється для спостереження взаємодії шаруватої рідини і міжфазної хвилі з пористою структурою. Аналізується вплив пористої структури і її ефективність в гасінні пов'язаних хвиль коливання і ударного тиску на стінки резервуара при різних конфігураціях установки.

В статті [8] досліджується поширення одновимірних нестаціонарних хвиль в насиченому багатошаровому ґрунті з рідким поверхневим шаром. На основі теорії Біо для розробки аналітичних / напіваналітичних рішень використовуються метод розкладання за власними функціями, метод матриці переносу, метод простору станів і метод інтегрування точного тимчасового кроку. На численних прикладах аналізується вплив коефіцієнтів динамічної проникності для рідини на перехідну характеристику моделі, що важливо в додатках для морської сейсміки і акустики океану.

У статті [9] представлено явний точний розв'язок нелінійного основного рівняння з членами Коріоліса і доцентровими членами в модифікованому наближенні екваторіальної бетаплощини і на довільній широті. Розв'язок описує хвилі в лагранжевій азимутальній екваторіальній пастці, що поширюються на схід в стратифікованій рідині, що обертається.

У статті [10] в рамках рівнянь Нав'є-Стокса для стратифікованої рідини чисельно досліджені динаміка і енергетика лобового зіткнення внутрішніх відокремлених хвиль першої моди в рідині з двома однорідними шарами, розділеними тонким міжфазним шаром. Було показано, що лобове зіткнення внутрішніх відокремлених хвиль малої і помірної амплітуди призводить до малого фазового зсуву і генерації цуга дисперсійних хвиль, що біжать за минулою відокремленою хвилею.

Фазовий зсув зростає зі збільшенням амплітуд взаємодіючих хвиль. Максимальна амплітуда накату при зіткненні хвиль досягає значення, що перевищує суму амплітуд падаючих

відокремлених хвиль. Перевищення максимальної амплітуди накату над сумою амплітуд зустрічних хвиль зростає зі збільшенням амплітуди взаємодіючих хвиль малої і помірної амплітуди, тоді як для зустрічних хвиль великої амплітуди воно зменшується.

У роботі [11] розглянуто актуальні задачі, що виникають в океанографії і пов'язані зі стратифікованими течіями, такими як гравітаційні потоки на континентальному схилі біля Антарктичного півострова, де розташована українська антарктична станція «Академік Вернадський», генерацію та поширення внутрішніх хвиль у морях та океанах та їх вплив на перемішування в шельфових зонах.

У дослідженні [13] за допомогою лагранжевого опису руху рідини вивчаються гравітаційні хвилі стоксового типу в системі двох горизонтальних шарів нев'язкої, стратифікованої рідини, що змішується. Показано, що для того, щоб повний вертикально-інтегрований потік Стокса став рівним нулю, щільність повинна бути неперервною на границі розділу.

У роботі [14] досліджувалася модель поширення хвиль у гідродинамічній системі «рідкий шар з твердим дном – рідкий шар з вільною поверхнею». Показано існування внутрішньої і поверхневої складових хвильового поля та проаналізовано їх взаємодію.

Формулювання мети дослідження

Метою даної роботи є дослідження проблеми поширення слабконелінійних хвильових пакетів у тришаровій гідродинамічній системі «шар з твердим дном – шар – шар з кришкою». З використанням методу багатомасштабних розвинень отримати першу лінійну задачу та її розв'язки. Отримати вирази для відношень амплітуд відхилень верхньої та нижньої поверхонь контакту, які відповідають кореням дисперсійного рівняння. Отримати графіки залежності відношень амплітуд від таких фізичних параметрів: товщини верхнього та нижнього шарів, хвильового числа. Провести якісний аналіз поведінки відношень амплітуд.

Виклад основного матеріалу

У даній статті досліджується задача поширення хвильових пакетів у тришаровій гідродинамічній системі «шар з твердим дном – шар – шар з кришкою» (рис. 1).

Рис. 1. Постановка задачі

Де $\Omega_1 = \{(x, z) : |x| < \infty, -h_1 \le z \le 0\}$ з густиною ρ_1 , $\Omega_2 = \{(x, z) : |x| < \infty, 0 \le z \le h_2\}$ з густиною ρ_2 , $\Omega_3 = \{(x, z) : |x| < \infty, h_2 \le z \le h_2 + h_3\}$ з густиною ρ_3 — нижній, середній та верхній шари відповідно, розділені поверхнями контакту $z = \eta_1(x, t)$ та $z = \eta_2(x, t)$. Верхній шар обмежений кришкою, нижній шар обмежений твердим дном. Сила тяжіння направлена у від'ємному *z*-напрямку перпендикулярно до поверхні розподілу.

Математична постановка проблеми виглядає наступним чином: швидкість поширення пакетів

$$\varphi_{j,xx} + \varphi_{j,zz} = 0 \ y \ \Omega_{j}, j = 1,2,3,$$
 (1)

кінематичні умови на поверхнях контакту

$$η1,t - φj,z = -φj,xη1,x πρи z = η1(x,t), j = 1,2;$$
(2)

$$\eta_{2,t} - \varphi_{j,z} = -\varphi_{j,x} \eta_{2,x} \text{ при } z = h_2 + \eta_2(x,t), \ j = 2,3,$$
(3)

динамічні умови на поверхнях контакту

$$\rho_{1}\phi_{1,t} - \rho_{2}\phi_{2,t} + g(\rho_{1} - \rho_{2})\eta_{1} + \frac{1}{2}\rho_{1}(\nabla\phi_{1})^{2} - \frac{1}{2}\rho_{2}(\nabla\phi_{2})^{2} - T_{1}\left(1 + (\eta_{1,x})^{2}\right)^{\frac{1}{2}}\eta_{1,xx} = 0$$

$$\Pi \rho_{I} z = \eta_{1}(x,t); \qquad (4)$$

$$\rho_{2}\phi_{2,t} - \rho_{3}\phi_{3,t} + g(\rho_{2} - \rho_{3})\eta_{2} + \frac{1}{2}\rho_{2}(\nabla\phi_{2})^{2} - \frac{1}{2}\rho_{3}(\nabla\phi_{3})^{2} - T_{2}\left(1 + (\eta_{2,x})^{2}\right)^{-\frac{3}{2}}\eta_{2,xx} = 0$$

$$\Pi p_{H} z = h_{2} + \eta_{2}(x,t), \qquad (5)$$

умова непроникливості на дні

$$\varphi_{1,z} = 0 \ \Pi p \mu \ z = -h_1 \,, \tag{6}$$

умова непроникливості на кришці

$$\varphi_{3,z} = 0 \ \Pi p \mu \ z = h_2 + h_3, \tag{7}$$

де ϕ_j (*j* = 1,2,3) потенціали швидкості частинок в Ω_j , η_1, η_2 — відхилення поверхонь контакту, T_1, T_2 — коефіцієнти поверхневого натягу на поверхнях контакту, g — прискорення вільного падіння.

За допомогою методу багато масштабних розвинень, функції відхилення поверхонь контакту та потенціали швидкостей представлено у вигляді

$$\eta_j(x,t) = \sum_{n=1}^{3} \alpha^{n-1} \eta_{jn}(x_0, x_1, x_2 t_0, t_1, t_2) + O(\alpha^3), j = 1, 2;$$
(8)

$$\varphi_j(x,t,z) = \sum_{n=1}^3 \alpha^{n-1} \varphi_{jn}(x_0, x_1, x_2, z, t_0, t_1, t_2) + O(\alpha^3), j = 1, 2, 3.$$
(9)

Задача першого наближення має вигляд

$$\varphi_{j1,x_{0}x_{0}} + \varphi_{j1,zz} = 0 \text{ у } \Omega_{j}, j = 1,2,3;$$

$$\eta_{11,t_{0}} - \varphi_{j1,z} = 0 \text{ на } z = 0, j = 1,2;$$

$$\eta_{21,t_{0}} - \varphi_{j1,z} = 0 \text{ на } z = h_{2}, j = 2,3;$$

$$\varphi_{11,t_{0}} - \rho_{2}\varphi_{21,t_{0}} + (1-\rho_{2})\eta_{11} - T_{1}\eta_{11,x_{0}x_{0}} = 0 \text{ на } z = 0;$$

$$\rho_{2}\varphi_{21,t_{0}} - \rho_{3}\varphi_{31,t_{0}} + (\rho_{2} - \rho_{3})\eta_{21} - T_{2}\eta_{21,x_{0}x_{0}} = 0 \text{ на } z = h_{2};$$

$$\varphi_{11,z} = 0 \text{ на } z = -h_{1};$$

$$\varphi_{31,z} = 0 \text{ на } z = h_{2} + h_{3}.$$

$$\text{ Наступні дві задачі лінійні задачі наведені у роботі [12].$$

$$Для задачі першого наближення виведене дисперсійне співвідношення:$$

$$\frac{\rho_2^2 \omega^4}{\mathrm{sh}^2(kh_2)} - \left((1 - \rho_2)k + T_1 k^3 - \omega^2 (\mathrm{cth}(kh_1) + \rho_2 \mathrm{cth}(kh_2)) \right) \times$$
(11)

$$\times \left((\rho_2 - \rho_3)k + T_2k^3 - \omega^2(\rho_2 \operatorname{cth}(kh_2) + \rho_3 \operatorname{cth}(kh_3)) \right) = 0.$$

Отримане дисперсійне співвідношення має дві пари коренів

$$\omega_1^2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \ \omega_2^2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a},$$
(12)

де

$$a = \frac{\rho_2^2}{\sinh^2(kh_2)} - (\rho_2 \operatorname{cth}(kh_2) + \rho_3 \operatorname{cth}(kh_3))(\operatorname{cth}(kh_1) + \rho_2 \operatorname{cth}(kh_2));$$

$$b = (\rho_{2} \operatorname{cth}(kh_{2}) + \rho_{3} \operatorname{cth}(kh_{3}))((1-\rho_{2})k + T_{1}k^{3}) + (k(\rho_{2}-\rho_{3}) + T_{2}k^{3})(\operatorname{cth}(kh_{1}) + \rho_{2} \operatorname{cth}(kh_{2}));$$

$$c = -(k(\rho_{2}-\rho_{3}) + T_{2}k^{3})((1-\rho_{2})k + T_{1}k^{3}).$$
(13)
$$A_{\Pi \pi} \omega_{1}$$

$$\varphi_{11}^{(1)} = \frac{2\omega_{1}}{k \operatorname{sh}(kh_{1})}\operatorname{ch}(k(h_{1}+z))A \sin(kx - \omega_{1}t);$$

$$\varphi_{21}^{(1)} = -\left(\frac{2\omega_{1}\operatorname{ch}(k(h_{2}-z))}{k \operatorname{sh}(kh_{2})} + \frac{2((1-\rho_{2})k + T_{1}k^{3} - \omega_{1}^{2}\operatorname{cth}(kh_{1}) - \rho_{2}\omega_{1}^{2}\operatorname{cth}(kh_{2}))\operatorname{ch}(kz)}{\rho_{2}\omega_{1}k}\right)A \sin(kx - t\omega_{1});$$

$$\varphi_{31}^{(1)} = \frac{2\operatorname{sh}(kh_{2})((1-\rho_{2})k + T_{1}k^{3} - \omega_{1}^{2}\operatorname{cth}(kh_{1}) - \rho_{2}\omega_{1}^{2}\operatorname{cth}(kh_{2}))\operatorname{ch}(k(h_{2} + h_{3} - z))}{\rho_{2}\omega_{1}k \operatorname{sh}(kh_{3})}A \sin(kx - t\omega_{1});$$

$$\eta_{11}^{(1)} = 2A \cos(kx - \omega_{1}t);$$

$$\eta_{21}^{(1)} = -\frac{\operatorname{sh}(kh_{2})((1-\rho_{2})k + T_{1}k^{3} - \omega_{1}^{2}\operatorname{cth}(kh_{1}) - \rho_{2}\omega_{1}^{2}\operatorname{cth}(kh_{2}))}{\omega_{1}^{2}\rho_{2}}2A \cos(kx - \omega_{1}t).$$
(14)
$$A_{\Pi \pi} \omega_{2}$$

$$\varphi_{11}^{(2)} = -\frac{2\rho_{2}\omega_{2}^{3}\operatorname{ch}(k(h_{1}+z))B \sin(kx - \omega_{2}t)}{(kh_{1}-k_{2})(kh_{2}-k_{1})}\frac{2}{\kappa}d_{1}(kh_{2}-k_{2})}{(kh_{2}-k_{1})}\frac{2}{\kappa}d_{1}(kh_{2}-k_{2})};$$

$$\begin{aligned} \varphi_{11}^{(2)} &= -\frac{2\beta_2 \omega_2 \operatorname{cn}(k(h_1 + 2))B \sin(kx - \omega_2 t)}{k \operatorname{sh}(kh_1) \operatorname{sh}(kh_2)((1 - \rho_2)k + T_1 k^3 - \omega_2^2 \operatorname{cth}(kh_1) - \rho_2 \omega_2^2 \operatorname{cth}(kh_2))}; \\ \varphi_{21}^{(2)} &= \left(\frac{\operatorname{ch}(k(h_2 - z))\rho_2 \omega_2^2}{\operatorname{sh}(kh_2)((1 - \rho_2)k + T_1 k^3 - \omega_2^2 \operatorname{cth}(kh_1) - \rho_2 \omega_2^2 \operatorname{cth}(kh_2))} + \operatorname{ch}(kz)\right) \frac{2\omega_2 B \sin(kx - \omega_2 t)}{k \operatorname{sh}(kh_2)}; \\ \varphi_{31}^{(2)} &= -\frac{2\omega_2 \operatorname{ch}(k(h_2 + h_3 - z))B \sin(kx - \omega_2 t)}{k \operatorname{sh}(kh_3)}; \\ \eta_{11}^{(2)} &= -\frac{2B \cos(kx - \omega_2 t)\omega_2^2 \rho_2}{\operatorname{sh}(kh_2)((1 - \rho_2)k + T_1 k^3 - \omega_2^2 \operatorname{cth}(kh_1) - \rho_2 \omega_2^2 \operatorname{cth}(kh_2)))}; \\ \eta_{21}^{(2)} &= 2B \cos(kx - \omega_2 t). \end{aligned}$$
(15)

Де $\eta_{21}^{(1)}$ — хвиля-відгук на хвилю $\eta_{11}^{(1)}$ з частотою ω_1 та амплітудою A на нижній поверхні контакту. А $\eta_{21}^{(2)}$ є хвилею-відгуком на хвилю $\eta_{11}^{(2)}$ з частотою ω_2 та амплітудою B на верхній поверхні контакту.

Проведемо аналіз модуля відношення амплітуд відхилень нижньої та верхньої поверхонь контакту $\eta_{11}(x,t)$ та $\eta_{21}(x,t)$, що відповідають ω_1^2 та ω_2^2 для першої лінійної задачі. Дані модулі відношень позначимо наступним чином

$$a_{1} = \left| -\frac{\mathrm{sh}(kh_{2})((1-\rho_{2})k + T_{1}k^{3} - \omega_{1}^{2}\mathrm{cth}(kh_{1}) - \rho_{2}\omega_{1}^{2}\mathrm{cth}(kh_{2}))}{\rho_{2}\omega_{1}^{2}} \right|;$$

$$a_{2} = \left| -\frac{\rho_{2}\omega_{2}^{2}}{\mathrm{sh}(kh_{2})((1-\rho_{2})k + T_{1}k^{3} - \omega_{2}^{2}\mathrm{cth}(kh_{1}) - \rho_{2}\omega_{2}^{2}\mathrm{cth}(kh_{2}))}{|k|} \right|,$$
(16)

де a_1 та a_2 характеризують внесок хвилі з частотою ω_1 та ω_2 відповідно у хвильовий рух на поверхнях контакту.

На рис. 2, 3 представлені графіки залежності величин a_1 та a_2 від товщини нижнього шару h_1 при різних значеннях h_3 та фіксованих параметрів густин середнього та верхнього шарів. Інші параметри набувають таких значень: $T_1 = 0, T_2 = 0, h_2 = 1, k = 1$. 3 малюнків видно, що якісна поведінка відхилення амплітуд однакова. Також видно, що для всіх трьох випадків для кожного значення h_3 існують граничні значення, до яких наближаються абсолютні величини a_1 та a_2 . При чому, зі збільшенням товщини верхнього шару від 1 до 10 граничні значення

величин a_1 та a_2 зменшуються. При цьому, зміна відношення густин якісно не впливає на поведінку відношення амплітуд.

З точки зору збільшення густини верхнього шару, граничні значення величин a_1 та a_2 збільшуються. Збільшення товщини верхнього шару якісно не впливає на поведінку відношень a_1 та a_2 . При $\rho_2 = 0.95, \rho_3 = 0.9$ (рис. 2 ϵ , рис. 3 ϵ) граничне значення, до якого наближаються абсолютні величини a_1 та a_2 однакове.

Рис. 2. Залежність відношення амплітуд a_1 від товщини нижнього шару: $a - \rho_2 = 0.9, \rho_3 = 0.85$ $\delta - \rho_2 = 0.95, \rho_3 = 0.85$ $\epsilon - \rho_2 = 0.95, \rho_3 = 0.9$

Рис. 3. Залежність відношення амплітуд a_2 від товщини нижнього шару: $a - \rho_2 = 0.9, \rho_3 = 0.85$ $\delta - \rho_2 = 0.95, \rho_3 = 0.85$ $\epsilon - \rho_2 = 0.95, \rho_3 = 0.9$

Рис. 4. Залежність відношення амплітуд a_1 від товщини верхнього шару: $a - \rho_2 = 0.9, \rho_3 = 0.85$ $\delta - \rho_2 = 0.95, \rho_3 = 0.85$ $\epsilon - \rho_2 = 0.95, \rho_3 = 0.9$

Рис. 5. Залежність відношення амплітуд a_2 від товщини верхнього шару: $a - \rho_2 = 0.9, \rho_3 = 0.85$ $\delta - \rho_2 = 0.95, \rho_3 = 0.85$ $e - \rho_2 = 0.95, \rho_3 = 0.9$

На рис. 4, 5 представлені графіки залежності величин a_1 та a_2 від товщини верхнього шару h_3 для різних значеннях h_1 при фіксованих значеннях густин ρ_2 та ρ_3 . При збільшенні товщини h_3 значення абсолютних величин зменшуються. Для кожного значення товщини нижнього шару h_1 існують відповідні граничні значення, до яких наближаються абсолютні величини a_1 та a_2 . У всіх випадках збільшення товщини нижнього шару призводить до збільшення відповідних граничних значень величин a_1 та a_2 . Зміна густин середнього та верхнього шарів якісно не впливає на поведінку відношень a_1 та a_2 .

При дослідженні зміни товщини h_1 зі збільшенням густини ρ_3 граничні значення обох абсолютних величин також збільшуються. Якісної зміни в поведінці графіків не відбувається. Аналогічно до попереднього випадку при $\rho_2 = 0.95, \rho_3 = 0.9$ (рис. 4 *в*, рис. 5 *в*) граничні значення відношень a_1 та a_2 співпадають.

Рис. 6. Залежність відношення амплітуд a_1 від хвильового числа: $a - \rho_2 = 0.9, \rho_3 = 0.85$ б - $\rho_2 = 0.95, \rho_3 = 0.85$ в - $\rho_2 = 0.95, \rho_3 = 0.9$

На рис. 6 та 7 наведена залежність відношень a_1 та a_2 від хвильового числа k для різних значень товщини h_1 . У випадку 6a та 7a (коли $\rho_2 = 0.9, \rho_3 = 0.85$) для гравітаційних та капілярних хвиль зі збільшенням хвильового числа значення величин a_1 та a_2 збільшуються. В інших випадках зі збільшенням хвильового числа значення відхилень амплітуд a_1 та a_2 зменшуються, наближаючись до граничного значення, близького до нуля. Чим більша товщина нижнього шару h_1 тим більше початкове значення абсолютних величин a_1 та a_2 . У відповідних випадках зміни густин ρ_2 та ρ_3 поведінка відхилень амплітуд a_1 та a_2 є аналогічною. У випадках 6e, 7e також спостерігається рівність абсолютних величин для капілярних та гравітаційних хвиль.

Рис. 8. Залежність відношення амплітуд a_1 від хвильового числа: $a - \rho_2 = 0.9, \rho_3 = 0.85$ б - $\rho_2 = 0.95, \rho_3 = 0.85$ в - $\rho_2 = 0.95, \rho_3 = 0.9$

Рис. 9. Залежність відношення амплітуд a_2 від хвильового числа: $a - \rho_2 = 0.9, \rho_3 = 0.85$ $\delta - \rho_2 = 0.95, \rho_3 = 0.85$ $s - \rho_2 = 0.95, \rho_3 = 0.9$

На рис. 8, 9 представлено залежність абсолютних величин a_1 та a_2 від хвильового числа для різних значень товщини верхнього шару h_3 для різних фіксованих значень ρ_2 та ρ_3 . При $\rho_2 = 0.9, \rho_3 = 0.85$ величини a_1 та a_2 зростають зі збільшенням хвильового числа для гравітаційних та капілярних хвиль, в інших випадках зміни густин ρ_2 та ρ_3 — починаючи з деякого значення хвильового числа зменшуються, наближаючись до нуля. Більше значення товщини верхнього шару відповідає меншому початковому значенню величин a_1 та a_2 (для гравітаційних хвиль). Поведінка відхилень амплітуд у відповідних випадках зміни густин середнього та верхнього шарів аналогічна. При $\rho_2 = 0.95, \rho_3 = 0.9$ (рис. 8 ϵ , рис. 9 ϵ) має місце рівність абсолютних значень $|a_1| = |a_2|$. Зі збільшенням значення ρ_3 (рис. 8 ϵ , рис. 9 ϵ) відповідні максимальні значення абсолютних величини a_1 та a_2 збільшуються.

Висновки

Досліджувалася задача поширення хвиль у тришаровій системі «шар з твердим дном – шар – шар з кришкою». Для задачі першого наближення виведене дисперсійне співвідношення та дві пари коренів. Отримано вирази відношень амплітуд відхилень поверхонь контакту, які відповідають кореням дисперсійного рівняння. Графічно проілюстрована та проаналізована залежність відношень амплітуд від різних фізичних параметрів (товщини верхнього та нижнього шарів, хвильового числа) при зміні товщини нижнього і верхнього шарів та густин середнього та верхнього шарів.

Графіки залежності відношень амплітуд a_1 та a_2 від h_1 та h_3 у всіх випадках прямують до певного граничного значення не залежно від зміни густин середнього та верхнього шарів. Проте при залежності відношень амплітуд a_1 та a_2 від h_1 величини a_1 та a_2 збільшуються до граничного значення, при залежності відношень амплітуд від h_3 — зменшуються.

Графіки залежності a_1 та a_2 від хвильового числа показують, що у випадку, коли $\rho_2 = 0.9, \rho_3 = 0.85$ при різних значеннях товщини нижнього шару значення відношень амплітуд збільшуються зі зменшенням довжини хвилі, в інших випадках зміни густин значення a_1 та a_2 зменшуються, наближаючись до певного граничного значення.

При зміні товщини верхнього шару h_3 значення величин a_1 та a_2 при $\rho_2 = 0.9, \rho_3 = 0.85$ також зростають для капілярних і гравітаційних хвиль. В інших випадках після деякого числа k значення величин a_1 та a_2 зменшуються і в області капілярних хвиль при великих значеннях хвильового числа k > 8 графіки для відповідних значень товщини h_3 співпадають, наближаючись до нуля.

Також виявлено випадки рівності абсолютних значень величин $|a_1| = |a_2|$.

Список використаної літератури

- 1. Ankudinov N.O., Slepyshev A.A. Vertical Momentum Transfer Induced by Internal Waves in a Two-Dimensional Flow. *Fluid dynamics*. 2021. Vol. 56, No. 3, P. 343–352.
- 2. Avramenko O., Lunyova M., Naradovyi V. Wave propagation in a three-layer semi-infinite hydrodynamic system with a rigid lid. *Eastern-European Journal of Enterprise Technologies*. 2017. Vol. 5, No. 5, P. 58–66.
- 3. Bianchini R., Dalibard A.L., Saint-Raymond L. Near-critical reflection of internal waves. *Analysis & PDE*. 2021. Vol. 14, No. 1, P. 205–249.
- 4. Camassa R., Falqui G., Ortenzi G., Pedroni M., Ho T. T. V. Hamiltonian Aspects of Three-Layer Stratified Fluids. *Journal of nonlinear science*. 2021. Vol. 31, No. 4, P. 70.
- 5. Derzho O.G. Large amplitude capillary-gravity solitary waves in a stratified fluid sandwiched between two deep homogeneous layers. *CHAOS*. 2021. Vol. 31, No. 6, 063104.
- Du H., Wang S.D., Wang X.L., Xu J.N., Guo H.L., Wei G. Experimental investigation of elevation internal solitary wave propagation over a ridge. *Physics of fluids*. 2021. Vol. 33, No. 4, 042108.
- 7. Kargbo O., Xue M.A., Zheng J.H., Yuan X.L. Multiphase sloshing dynamics of a two-layered fluid and interfacial wave interaction with a porous T-shaped baffle in a tank. *Ocean engineering*. 2021. Vol. 229, 108664.
- 8. Shan Z.D., Jing L.P., Zhang L., Xie Z.N., Ling D.S. Transient wave propagation in a multilayered soil with a fluid surface layer: 1D analytical/semi-analytical solutions. *International journal for numerical and analytical methods in geomechanics*.2021. Vol. 45, No. 13, P. 2001–2015.
- 9. Su D. Exact azimuthal equatorially trapped waves with centripetal force in modified equatorial beta-plane approximation and at arbitrary latitude. *Monatshefte fur mathematic*. 2021.
- 10. Terletska K., Jung K.T., Maderich V., Kim K.O. Frontal collision of internal solitary waves of first mode. *Wave Motion*. 2018. Vol. 77, P. 229–242.

- 11. Terletska K.V. Modeling of gravity currents in oceans and inland reservoirs. *According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine*: Visn. Nac. Akad. Nauk Ukr., Kyiv, 11 September 2019., Kyiv, P. 31–37.
- 12. Naradovyi V., Kharchenko D. Investigation of the energy of wave motions in a three-layer hydrodynamic system. *Waves in Random and Complex Media*, 2019. Vol. 31, No. 6, P. 1729–1748.
- 13. Weber J.E. H., Christensen K.H. On the singular behavior of the Stokes drift in layered miscible fluids. *Wave motion*. 2021. Vol. 102, 102712.
- 14. Нарадовий В.В., Селезов И.Т., Авраменко О.В., Гуртовий Ю.В. Нелінійна взаємодія внутрішніх і поверхневих гравітаційних хвиль у двошаровій рідини з вільною поверхнею. *Математичні методи та фізико-механічні поля.* 2016. № 52(1), 72–83.

INVESTIGATION OF WAVE MOVEMENTS IN THE THREE-LAYER HYDRODYNAMIC SYSTEM "LAYER WITH HARD BOTTOM – LAYER – LAYER WITH COVER" Naradayyi V – Kharabanka D

Naradovyi V., Kharchenko D.

Abstract

Modeling of wave motions in stratified liquids of different types makes it possible to study similar wave processes in the ocean and predict their behavior.

The aim of this article is to study the problem of propagation of weakly nonlinear wave packets in a three-layer hydrodynamic system "layer with a hard bottom - layer - layer with a cover".

Using the method of multiscale developments, the first linear problem is obtained, the variance relation and two pairs of roots are derived. Expressions for the relations of amplitudes of deviations of contact surfaces corresponding to the roots of the dispersion equation are obtained. The dependence of amplitude relations on different physical parameters (thickness of upper and lower layers, wave number) when changing the thickness of lower and upper layers and densities of middle and upper layers is graphically illustrated and analyzed.

Graphs of the dependence of the ratios of the amplitudes a_1 and a_2 on h_1 and h_3 in all cases go to a certain limit value, regardless of changes in the densities of the middle and upper layers. However, if the ratios of the amplitudes a_1 and a_2 depend on h_1 , the values of a_1 and a_2 increase to the limit value, and if the ratios of the amplitudes depend on h_3 , they decrease.

Graphs of the dependence of a_1 and a_2 on the wave number show that in the case when $\rho_2 = 0.9, \rho_3 = 0.85$ at different values of the thickness of the lower layer, the values of the amplitude ratios increase with decreasing wavelength. In other cases density changes values a_1 and a_2 decrease, approaching a certain limit value.

When the thickness of the upper layer h_3 changes, the values of a_1 and a_2 at $\rho_2 = 0.9, \rho_3 = 0.85$ also increase for capillary and gravitational waves. In other cases, after a certain number k, the values of a_1 and a_2 decrease, and in the region of capillary waves at large values of the wave number k > 8, the graphs for the corresponding values of the thickness h_3 coincide, approaching zero. There are also cases of equality of absolute values of $|a_1| = |a_2|$.

The results of the study can be applied in oceanography, hydrodynamics, biomechanics, in some branches of shipbuilding.

References

- [1] Ankudinov N.O., Slepyshev A.A. (2021). Vertical Momentum Transfer Induced by Internal Waves in a Two-Dimensional Flow. *Fluid dynamics*. 56(3), 343-352. doi: 10.1134/S0015462821030022
- [2] Avramenko O., Lunyova M., Naradovyi V. (2017). Wave propagation in a three-layer semiinfinite hydrodynamic system with a rigid lid. *Eastern-European Journal of Enterprise Technol*ogies. 5(5), 58-66. doi: 10.15587/1729-4061.2017.111941
- [3] Bianchini R., Dalibard A.L., Saint-Raymond L. (2021). Near-critical reflection of internal waves. Analysis & PDE. 14(1), 205–249. doi: 10.2140/apde.2021.14.205
- [4] Camassa R., Falqui G., Ortenzi G., Pedroni M., Ho T. T. V. (2021). Hamiltonian Aspects of Three-Layer Stratified Fluids. *Journal of nonlinear science*. 31(4), 70. doi: 10.1007/s00332-021-09726-0
- [5] Derzho O.G. (2021). Large amplitude capillary-gravity solitary waves in a stratified fluid sandwiched between two deep homogeneous layers. *CHAOS*. 31(6), 063104. doi: 10.1063/5.0047032
- [6] Du H., Wang S.D., Wang X.L., Xu J.N., Guo H.L., Wei G. (2021). Experimental investigation of elevation internal solitary wave propagation over a ridge. *Physics of fluids*. 33(4), 042108. doi: 10.1063/5.0046407
- [7] Kargbo O., Xue M.A., Zheng J.H., Yuan X.L. (2021). Multiphase sloshing dynamics of a twolayered fluid and interfacial wave interaction with a porous T-shaped baffle in a tank. *Ocean engineering*. 229, 108664. doi: 10.1016/j.oceaneng.2021.108664
- [8] Shan Z.D., Jing L.P., Zhang L., Xie Z.N., Ling D.S. (2021). Transient wave propagation in a multi-layered soil with a fluid surface layer: 1D analytical/semi-analytical solutions. *International journal for numerical and analytical methods in geomechanics*. doi: 10.1002/nag.3253
- [9] Su D. (2021). Exact azimuthal equatorially trapped waves with centripetal force in modified equatorial beta-plane approximation and at arbitrary latitude. *Monatshefte fur mathematic*. doi: 10.1007/s00605-021-01565-1
- [10] Terletska K., Jung K.T., Maderich V., Kim K.O. Frontal collision of internal solitary waves of first mode. *Wave Motion*. 2018. 77: 229. DOI: https://doi.org/10.1016/j.wavemoti.2017.12.006
- [11] Terletska K.V. (2019). Modeling of gravity currents in oceans and inland reservoirs. According to the materials of scientific report at the meeting of the Presidium of NAS of Ukraine: Visn. Nac. Akad. Nauk Ukr., 11 September 2019., P. 31–37.
- [12] Naradovyi V., Kharchenko D. (2019). Investigation of the energy of wave motions in a threelayer hydrodynamic system. *Waves in Random and Complex Media*, 31(6), 1729–1748. doi: 10.1080/17455030.2019.1699674
- [13] Weber J. E. H., Christensen K.H. (2021). On the singular behavior of the Stokes drift in layered miscible fluids. *Wave motion*. 102, 102712. doi: 10.1016/j.wavemoti.2021.102712
- [14] Naradovyi, V.V., Selezov, Y.T., Avramenko, O.V., & Hurtovyi, Yu. V. (2016). Neliniina vzaiemodiia vnutrishnikh i poverkhnevykh hravitatsiinykh khvyl u dvosharovii ridyny z vilnoiu poverkhneiu [Nonlinear interaction of internal and surface gravitational waves in a two-layer liquid with a free surface]. *Matematychni metody ta fizyko-mekhanichni polia - Mathematical methods and physical and mechanical fields*, 52(1), 72–83 [in Ukrainian].