44 Marematiane monemtoBanas Ne 1(46) 2022

DOI: 10.31319/2519-8106.1(46)2022.258352
UDK 519.664

V. Lytvynenko, Ph. D., Assosiate Professor
O. Ryazancev, Ph. D., Assosiate Professor
M. Gnatyk, Ph. D., Assosiate Professor
Dnipro State Technical University, Kamianske

NUMERICAL METHODS OF INTEGRATING FUNCTIONS OF METROLOGICAL
RELIABILITY OF MEASURING INSTRUMENTS

The methods used in the integration of discrete-continuous functions of metrological reliabili-
ty of measuring instruments (MI) are determined. The mathematical apparatus of recursive reliability
functions is given, the peculiarities of integration of these functions are determined. Algorithms for
implementing and estimating the accuracy of quadrature functions in calculating the metrological re-
liability of MI are considered.
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Busnauaiomvca memoou saxi 3acmocogyiomsvcs npu iHmezpy8anui OUCKpemHo-6e3nepepeHux
@yHryit memponoeiunoi Haoitinocmi 3acobie eumipiosans (3B). Ilpusooumvcs mamemamuyruil
anapam pexypcusHux QyHKyYil HaOiliHOCMI, GU3HAUATOMbCS 0COOIUBOCTH THMESPYBAHHS OAHUX (DYH-
Kyitl. Posensdaromucsi aneopummu peanizayii i oyinku mounocmi Qyukyii Kkeadpamyp npu ooyuc-
JIeHHT Mempono2iunol Haoditinocmi 3B.
Knrouoei cnosa: memponoziuna HadiuHicms, peKypCUusHi (yHKYii, Memoou YUceibHo20 iHmee-
PYBAHHSL, MOUHICIb KEAOPAMYD.

Problem’s formulation

The main mathematical apparatus of the theory of metrological reliability is the theory of ran-
dom functions, probability theory and mathematical statistics. In the a priori analysis of reliability al-
low fully defined probabilistic characteristics of reliability. Establishing an analytical expression for
the distribution of random variables allows you to determine the required reliability. The choice of
theoretical model of failures determines the accuracy of quantitative estimates of reliability indicators.
The distribution function, which is used as a model of failures, solves the following problem — the
calculation of failure rates. The classical method of calculating the reliability of systems is to deter-
mine the characteristics of indicators of system reliability based on the use of fundamental theorems of
probability theory. The probabilistic-physical method is based on the use of the probabilistic-physical
model and considers many states of the system with continuous time. At the same time there is a prob-
lem of integration of discrete-continuous functions of metrological reliability.

Analysis of recent research and publications

Mathematical and physical (in the sense of statistical distributions) failure distribution func-
tions are universal and have an advantage over the classical integral distribution laws, but due to the
fact that these functions are expressed through the Laplace integral and the integral of the form

J. e_t2 dt 1is not expressed through elementary functions, there are difficulties in obtaining both accu-

rate and approximate analytical solution of a definite integral for functions p_ ik () — probability of

MI operation without metrological failure and p ,, x (1) — work of MI with metrological refusal at cal-

culation #;— time of faultless work. Application of some standardized approximations [1] of the func-
z z :

tion @(z)= i j e_7 dz allows you to approximate these functions in a limited range of values. De-

—00

composition into a McLaren series, or trigonometric series, and finding the partial sum of a series,
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finding the initial approximating function, and applying the integration apparatus in parts lead to cum-
bersome and inefficient calculations. Therefore, these techniques cannot be used to solve this class of
problems. For example, the decomposition of the function f(x)=0.5-(1+erf(x)) in the McLaren

series allows to approximate the studied function in a limited range of values x €[-2,2] in the neigh-

borhood x=0.
The use of polynomial approximation methods does not allow to approximate the function
with high accuracy f(x) (Fig.1), but the superposition (convolution) of the product

{ (I-Fppr,,(O)R, (t)} of the subintegral function can be approximated with the minimum deviation
(Fig. 2).
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Fig. 1. Polynomial approximation by polynomials of 4th, 7th, 8th degree
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Fig. 2. Results of approximation of subintegral function {(1- Fpy , ()R, (t)} by polynomial

of the 4th order and norm of deviation of result
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The ineffectiveness of these approaches is explained as follows. These expressions are func-
tions of many variables that depend on both time and the parameters of the metrological control which
in turn are parameters of the laws of distribution of probability of failure (and some are set by the tar-
get production system); when varying these parameters, the shape of the approximating functions
changes and it is necessary to calculate new polynomial coefficients for each case and obtain an ap-
proximate analytical solution of the integral to find the mathematical expectation of the total metrolog-
ical control time without failures.

Formulation of the study purpose

The aim of the article is to define analytical expressions for recursive functions of metrological
reliability of MI. Taking into account the peculiarities of the subintegral function of the faultless opera-
tion of the MI, the substantiation of the choice and comparison of numerical integration methods, as well
as the calculation of the accuracy of the algorithms for the implementation of quadrature functions.

Presenting main material
We write the expressions for the functions p_,, 4 (¢) and p,, « (?), for the diffusion monotone

distribution of the probabilities of metrological failures and for the exponential model of explicit fail-
ures in the following form

Pk O prr =Py k- A= Fppr ,, ()R (0);
Pk O par =Lpapy + Piom s - Fom s (OIR, (1)

where Fpyy ,,(¢), R, (1) — the functions of the probabilities of metrological failure and work without

(1)

explicit failures of the metrological control in the time interval z, +k7, <t<7t, +(k+1)T, , respec-

tively(verification time, verification number, verification period).
Recursive functions of probabilities of finding MI in states 1 and 2 (1 — MI is workable and
used for its intended purpose; 2 — MI is used with metrological refusal) after £ — its verification

Pipm k+1 = Piom ke - (L= Fpar (TR (T) (1= ay); | @
Papar k1 =LPapark + Pioack - Fou o, TR (T) B |
for zero verification:
Piom,o =A=B,)A=Fpyr , (7,))R, (7)1 - a,); )
Papm 0 =By +A=B,)Fpy,, (T )IR, (7,) B,
(probability of error of the 1st kind, probability of error of the 2nd kind).
T
For convenience of calculations we will enter the following relative sizes: x = L , X, = T—” s
M M
_x, 1 xp -1

Z Z

Ty . x—1
x; =—— (work on metrological refusal). Let's denote by Z;, =——, Z,=——, Z, =
T, VWX VA X, VAl X,

(coefficient of variation). As a result, the following relations are valid for expressions (1—3)

FDMM(t) =%|:1+erf(%Ji|’ FDMM(Tn) =%|:1+erf(%Ji|,

Tn Tn

(4)

FDMW”)%{Heﬁ(%ﬂ;&m:e LR (T =e T R, (zy) =€ To.

The parameter is the time for explicit refusal.
According to formula (4) we write the expression ¢; for the DM-distribution of operating time
I-x

W

on the metrological failure. To do this, introduce the following substitutions: denote by U; =
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then the multiplier (1—Fpyy ,, (1)) =DU,) =Rpps (1) — the probability of MI operation without

metrological failures at the time 7.

Given the behavior of reliability functions depending on the parameters of the metrological
control and the results of the integration procedures of the above quadratures as the optimal algorithm

T,+kT,
for calculating the function: f(¢)p = j (Rp (R, (¢))dt , which is valid for both diffusion mod-
T+, n

els (index D) the adaptive Gauss-Lobatto quadrature is chosen with an accuracy of 10°.

To verify the validity of the obtained solutions using numerical integration methods to calcu-
late the value f;, we compared the results obtained for the adaptive Simpson and Gauss-Lobatto qua-

drature in the input diffusion models of metrological failures. Studies conducted for different values of
metrological control parameters using a discrete-continuous operation model have shown the advan-
tages of quadrature of Gaussian algebraic accuracy (reliability parameters for DM-distribution)
T,=T, =10000200.,v, =1.

In the process of research and configuration of the computational procedure of the MI relia-
bility analysis module, a library of numerical quadrature programs was created. It includes the adap-
tive Simpson algorithm (degree of accuracy) and programs that implement three-point and ten-point
Gauss-Legendre methods. Initially, these algorithms were implemented and tested as Matlab file func-
tions for comparison with standard Matlab numerical integration procedures, which are based on algo-
rithms developed by computer mathematics specialists Prof. Walter Gautschi and Walter Gander [2].

When choosing a quadrature method in addition to the behavior of this function, you need to
consider the accuracy and speed of numerical solutions. Since this function is quite smooth and has
(albeit cumbersome) expressions for high-order derivatives, we explore the possibility of applying qu-
adratures based on the Gauss-Legendre method.

On the basis of the algorithms given in the works carried out in [3—5], adaptive quadratures
based on 3 and 10-point interpolation of the Gaussian method are implemented. It is proposed to
choose the following recursive algorithm as a basis for software implementation

S(X,Y, f)= abs([Ga“SS(X Z, )+ Gauss(Z,Y, )] - Gauss(X, Y, f)J
Gauss(X,Y, f)

gauss m(X,Z,)=[S(X.,Y, f)<D — Gauss(X,Y, f),
else
gauss_m(X,Z, [)+gaus _m(Z,Y, f);],
Y
where G(X,Y, f) is the function for calculating the approximate value of the integral .[ f(x)dx,
X
m — selected quadrature method, D — integration threshold; first calculated G(X,Y,f),
G(X,Z,f) and G(Z,Y, ), where Z=0,5(X+Y).
The results of calculations and comparison of the accuracy of numerical integration functions for
a set of test algebraic functions by Gauss-Lobatto (quadl) and adaptive Simpson quadrature (quad) —
standard Matlab 7 functions, and author-modified procedures that implement three-point (gauss 3) and
ten ) Gauss-Legendre method. The criterion of accuracy (given relative error) in these examples is 10
Comparison of the results of calculation of reliability indicators using Gauss-Legendre and
Gauss-Lobatto algorithms showed that for engineering calculations it is recommended to use algo-
rithms based on 3 and 10-point Gauss-Legendre method, and for Gauss-Lobatto research (tabl. 1, 2)

[5].
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Table 1. Comparison of the accuracy of quadrature algorithms

Quadratur Test results on control examples
e —3x

4 —3x 6 .
functions | 7, = [13(x —x7)e 2 I, = {2+Sln(2\/;)dx
0

T

I, = [ + x + Dcos(x)dx
0

quadl -1.548788372527948 8.183479207654349 2.038197427572023
quad -1.548788476684941 8.183479195675837 2.038197433763133
gauss 3 -1.548788002258859 8.183479974070949 2.038198170813146
gauss 10 | -1.548788422369362 8.183478567673465 2.038198060499660

Table 2. Comparison of the accuracy of Gaussian quadratures in calculating the integral

Coefficient T, +kT,
of variation 1= j Rp ()R, (t)dt
Vu ,+T,

DM — metrological failure model

Em.gauss 3 Em. gauss 10

0,2 5.2189e-004 2.7016e-007

0,4 -0.0033 2.6547e-007

0,7 5.3990e-004 3.9050e-007

1,2 -0.0033 6.0549¢-007
Conclusions

The study of the accuracy of quadratures was carried out taking into account the change in the
behavior of the function at possible values of the coefficient of variation, which allows to assess the
accuracy and reliability of the developed algorithms when calculating reliability. To reduce the errors
of the numerical result, it is recommended to increase the accuracy of the integration threshold and the
limits of calculation of recursive series of the discrete-continuous model.
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III/ICE\.'J'ILHI METO/IU IHTET'PYBAHHS ®YHKIIA METPOJIOT' TYHOI
HAAIMHOCTI 3ACOBIB BUMIPIOBAHb
JIntBuHenko B.A., Pazannen O.B., I'natiok M.O.

Pedepar
MareMaTHYHUM amnapaToM Teopii METPOIOridHOl HaJifHOCTI € Teopis BHMAaAKOBUX (YHKIIH,
Teopiss IMOBIPHOCTI 1 MaTeMaTUYHA CTATHUCTHKA. BCTaHOBICHHS aHANITHYHOTO BUPa3y (YHKIIH po3-
MOJIUICHHST BUTIQJIKOBUX BEIMYWH JIO3BOJISE BUSHAUNTH HEOOXiHI TTOKa3HUKM HajiliHOCTI. Bubip Teo-
peTuyHOi MOjeNi BiIMOB BH3HAYa€ TOYHICTh KUTBKICHHMX OIIHOK TOKAa3HUKIB HaJiitHOCTI. DyHKITiSA
PO3IIOIiTY, SIKa 3aCTOCOBYETHCS B SIKOCTI MOl BiIMOB BHPILIy€e HACTYIIHY 3aJady — pO3paxyHOK IO-
Ka3HHKIB 0e3BiIMOBHOCTI. MeTo/ po3paxyHKy HaIilfHOCTiI CHCTEM MOJISArae B BU3HAUYCHHI XapaKTepHc-
TUK TIOKA3HUKIB HaAIfHOCTI CHCTEM 3aCHOBAHMH Ha BHUKOPHUCTaHHI (yHIaMEHTaJbHUX TEOpEM Teopii
fiMoBipHOCTI. IMOBipHICTHO-(i3HUHHT METO 3aCHOBAHHIT HA BUKOPHCTAHHI HMOBIpHICTHO-(hi3HuHOT
MOJIeNi 1 po3riIggae MHOKMHY CTaHIB CHCTEMH 3 Oe3nepepBHUM dacoM. IIpu iboMy BHHHKAE mpobiie-
Ma iHTerpyBaHHs JUCKpEeTHO-Oe3nepepBHUX (PYHKIIM METPOIIOTTYHOT HaJIHHOCTI.
B craTTi po3risiHyTi 00UMCITIOBaTIbHI METOOM THTEPYBaHHS IUCKPETHO-0e3mepepBHIX (PyHK-
it Mmerpornoriunoi HaxiHocTi. [IpuBeneno pekypcuBHi GyHKIIH MaTeMaTHYHOI Teopii HaAIHHOCTI 1
METO/U IHTEerpyBaHHA NaHuX QyHKUiH. Po3pobneni anroputmu i mpoBeaeHO NOPIBHAIBHHAN aHAII3 3
OL[IHKOIO TOYHOCTI (PYHKUill KBaApaTyp 3 BpaxXyBaHHSAM 3MiHHM MOBENIHKM (YHKILIi IPH MOKIHBHX
3Ha4YeHHSIX Koedimienta Bapiamii. Ilpm mpoMy BpaxoBYeETbCS MIBHAKICTH Omepamiii YMCENbHOTO
po3B’si3Ky. i 3MeHIIeHHs] TOXUOOK YHCENbHOTO PEe3yabTaTy PEKOMEHIYEThCS 30UIbIIYyBAaTH TOY-
HICTb TIOPOTY IHTErpyBaHHS i TpaHMLI OOYHMCICHHS PEKYPCHBHHX PSAIB AMCKPETHO-Oe3mepepBHOT
Mozeni. Jnsa imkeHepHUX po3paxyHKIB PEKOMEHIYEThCS 3aCTOCOBYBAaTH aIrOPUTMHU HAa OCHOBI Me-
tony ['aycca-Jlexxannpa, a s HayKoBUX JnociimpkeHs ["aycca-JIobarro.
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