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GENERALIZED METHOD OF SOLUTION OF MAGNETOSTATICS EQUATION

Combinations of the method of solving the non-linear discretized leveling of magnetostatics
for space-integrated levels in terms of bad efficiency or the complexity of the iterative process have
been proposed. For which the method of block iterations is used, which can widen the area of
stagnation, the lower iteration method, which is stable for the perfection of the non-linear alignment
of magnetostatics.
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3anpononosano KOMOIHOGAHUTI MEMOO GUPIUEHHS HENTHILIHO20 OUCKPEMU308AHO20 DIGHSHHSL
MAZHIMOCMamuxy 0 NPOCMOPOBUX THMEe2PATbHUX PIGHAHb 8 pa3i po30iscHocmi abo no2anoi 36iic-
Hocmi imepayitinozo npoyecy. s yb020 3acmoco8yemubcst Memood noOIOYHUX imepayill, Wo Mae wu-
puty obnacms 3aCmMoCy8anHts, Hidc Memoo imepayii, SKull 3acmoco8y8ascsi /i GUPIUEHHS HeNTHIUHO-
20 PIBHAHHA MASHIMOCMAMUKU.

Knrouoei cnosa: macnimocmamuka, iHmezpanvHi pieHAHHI, ANPOKCUMAYIs, YUcCelbHe MOOe-
JIFOBAHHAL.

Formulation of the problem

One of the important tasks of computational physics remains the development of universal al-
gorithms for high-precision calculation and optimization of magnetostatic systems (MS) for a nonli-
near environment, complex three-dimensional geometry of the magnetic system, as well as strong
primary fields that can lead to saturation of the magneto conductor.

The first method of such calculation is MS method of finite differences (FDM). Unfortunately,
this method is effective only in the simplest areas of a special form.

A more universal and modern method of calculation of MS is the finite element method
(FEM) [1—2], which is implemented in many industrial software packages. But this method has many
significant drawbacks. The main drawback of this method is the need to approximately set zero boun-
dary conditions of the first kind on some boundaries in order to limit the calculation domain D. Usual-
ly, the calculation domain D consists of the magnetic domain G and the non-magnetic medium P re-
gion, i.e. D = G U P. Therefore, the boundaries of the domain P in FEM has to be chosen approx-
imately, which adds to the calculation error. In addition, in this method, it is necessary to calculate the
field parameters in the entire region D, both in G and in R. By the way, this drawback is also characte-
ristic of the FDM. The FEM and FDM methods belong to the class of differential methods. They di-
rectly approximate the differential equations and boundary conditions of the MS calculation problem.

The class of methods of integral equations [3—6] is devoid of the mentioned shortcomings.
They approximate the integral equations describing the MS. In this case, the field parameters are cal-
culated only in the region of the magnets G, and not in the entire region D. There is no need to specify
the boundary conditions either. It should be noted that integral methods are less studied than differen-
tial methods. Therefore, the implementation of such methods has not yet received proper justification.

In particular, the implementation of iterative methods for nonlinear integral equations raises a
number of open questions concerning the convergence of the method of iteration of such equations
and the influence of the nature of the discretization on the iterative solution.

Analysis of recent research and publications

There are two different approaches to the construction of integral equations of magnetostatics
[3—o6]. The first, the method of secondary sources [3], leads to equations for fictitious (calculated)
field sources, distributed only on the boundary of the magnet region. The second approach [4—S5],
more modern and physical, leads to integral equations for spatially distributed field sources in the en-
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tire area of magnets, not only at the boundary. In this case, the field sources are physical field vectors
or their linear combinations, which is an advantage of this method. Most often, equations are used for
the vector of magnetization, intensity or induction of the magnetic field or their linear combinations.
This method of calculation is often called the method of spatial integral equations (SIE) [5].

At the first stage of SIE development, due to the insufficient speed of computer systems, the
most urgent problem was the effective formation of a system of nonlinear equations (NLE) for a given
discretization. Then, the solution of such NLE was reduced to the solution of the system of linear al-
gebraic equations (LAE) by linearizing the NLE by taking into account the nonlinear characteristics of
the environment. At the same time, the number of discretization elements was relatively small, their
shape varied slightly, so the LAEs for such magnetic systems were well determined. The computing
power of modern computers allows to dramatically increasing the number of MC discretization ele-
ments. However, in some cases it is difficult to provide a satisfactory iterative solution of NLE for
such tasks, although theoretically all the convergence conditions of the iteration method for SIE are
fulfilled.

Formulation of the purpose of the research

So, at the current stage of SIE development, one of the most urgent problems is the solution of
NLE and LAE due to the large number of discretization elements and their significant variation in siz-
es and shapes. In addition, another circumstance complicating the situation is that the LAEs for the
considered methods are not symmetric and not sign-defined. This leads to the fact that sometimes the
resulting LAE for such MCs becomes ill-conditioned. The consequence of this may be a violation of
the convergence conditions of the iterative process in case of unsuccessful discretization. It is difficult
to apply direct methods that could provide a more accurate solution of the LAE due to regularization
due to the large dimension of the LAE and the nonlinear nature of the MS. It should be emphasized
that the stage of formation of NLE and LAE for SIE requires much more time than their iterative solu-
tion. Therefore, increasing the time of the NLE solution due to more complex but effective algorithms
will not lead to a noticeable increase in the total time of MS calculation, however, it can decisively
affect the quality of the calculation of the parameters of the magnetic system.

Presenting main material

The article proposes a block-by-block algorithm for calculating magnetostatic fields using the

SIE method, which allows combining the advantages of direct and iterative methods of solving LAE

for MS. Next, the spatial integral equation of the field with respect to the calculated vector is consi-
dered:

U=B/uy+H=2H+M,
where B — induction vector, H — field strength vector, M — magnetization vector [4].
In turn, this ratio can be written as, U =2-Hy +2-H,, + M . Here H,; — field strength
created by the magnetization of the medium, a H, o — the intensity of the external field, which is

created by the primary sources of the field — stationary current sources that do not change in time,
and permanent magnets, that is, ferromagnetism with a predetermined and known magnetization vec-

tor that is practically independent of the external field. In this case, the modified integral equation is
valid [4]

U(x)=2-Hy(x)+IIM , (1)
where /M =2-[[ K(x,y)-M(y)-dv, ~No - M1+ M .
G
Here K(x,) — symmetric tensor of the second rank with components K;; = (o; a;,— d;; )/R™; where
m = 2,3 — dimension of space, a; — guiding cosines of the radius vector R; ¢; — Kronecker symbol;

changes in X,y are points in space, the integration is carried out only over the area of magnets G. For the
case of a piecewise constant and isotropic medium, the parameter N, is zero [4]. We will consider only the
isotropic medium used for the vast majority of MCs.

Next, only the calculation of the class of two-dimensional systems will be considered for simplifi-
cation. The case of axisymmetric and three-dimensional systems is considered similarly to the case of
two-dimensional systems. Equation (1) should be supplemented by the material magnetization curve
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B = B(H), with the help of which you can find the scalar nonlinear dependence M = M(U) of the
length of the vector M on the length of the vector U and connect these two quantities in one nonlinear
integral equation.

In these conditions, it is necessary to find the distribution of the calculated vector U, and then
with the help of the magnetization curve, the distribution of the magnetization vector M can be ob-
tained. The field strength at any point can be obtained using integration over known field sources.

To obtain a numerical solution, the domain of magnets G is divided into a set of elementary
domains G = UGi in such a way that mes(G; NG;) = 0 for i #j. Within the elementary region, the
properties of the environment will be considered constant. Therefore, in each individual element G;
the magnetization is constant, and thus, equation (1) is approximated using a piecewise constant ap-
proximation of the vector M.

Next, we turn to the discrete analog of equation (1). As a result, we will get a nonlinear vector

equation relative to the values of the calculated vector U (x), which is considered in the centers of
gravit x; elements

N
U(x;)=2Ho(x;)+2 ) Ay - M(x;)+M(x;) . )
j=1
Here 4; — tensor of the second rank. It is obtained by integration over the domain G; of the function
Ty T. xy

K{(x,y) and looks like 4;; = r | The components of the tensor determine the components of the
yx:=yy
field strength at point x; from the discretization element with number ;.

For a piecewise constant medium, equation (2) is significantly simplified. It is equivalent to

the equation
M =2Hy+(E+2A-2D)M =2Hy+S-M . A3)

Matrix 4 consists of tensor cells 4;, £ — unit matrix. D cellular diagonal matrix in which 2x2
cells are located on the main diagonal. On the diagonal of the i-th cells are written with the same value
1/y;, and the other two elements of the cell are equal to zero. Here y; — value of the magnetic suscep-
tibility in the i-th element..

The dimensionality of all matrices 4, D and E is equal to 2N, where N — number of discreti-
zation elements. This is true for two-dimensional and axisymmetric magnetic systems. For three-
dimensional systems, the considerations are similar, only the cell sizes will be 3%3, not 2x2.

We immediately note, and this is important, that the matrix D is not constant, but depends on
the vector M. Therefore, the iterative process for equation (3) must be modified in the following way

M, . =2Hy+S,-M,, 4
where S, = E+2(4 — D,).

In equation (4), there are actually two iterative processes: the main one with respect to the vec-
tor M,, and the additional one with respect to the diagonal matrix D,, which characterizes the proper-
ties of the ferromagnetic material. The size of the diagonal elements is recalculated according to the
magnetization curve of the material after each iteration. The variable matrix D, turns the iterative
process (4) into a non-stationary one, which significantly complicates theoretical studies of the con-
vergence of such a process. However, these processes are not equivalent: the main difficulty is the
iterative process with respect to the M, vector. This iterative process is a simple iteration method and
should theoretically converge [4] for any MS and types of materials according to the theorem on the
norm of the integral operator of equation (1), because the norm of this operator is theoretically less
than unity.

But, as evidenced by the results of computational experiments, the module of the maximum
eigenvalue of the matrix 4 can exceed unity as a result of the variation in the size and shape of the
elements due to the instability of the computational process. Then sometimes the iterative process (4)
will diverge. Another unpleasant circumstance is that the modulus of the minimum eigenvalue of the
S, matrix can be close to zero. It is known that if some eigenvalues of the matrix are equal to zero,
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then such LAE has a non-unique solution. In practice, this can lead to "parasitic" solutions. Similar
solutions for the discretized equation (4), which are caused by purely computational problems, will be
called physically imprecise. This is caused by the fact that the eigenvalues of an unsymmetrical matrix
are sometimes sensitive to rounding errors. In such cases, it is characteristic that the long iterative
process (4) runs out (after 200—300 or more iterations). So, there can be two reasons for this:

1) maximum modulus of the number of the S, matrix will be greater than the modulus of unity:
max|A(S,)| = 1+J, for the iterative process (4), where J, >0;

2) minimum modulus number of the matrix min|A(S,)|<J,.

In both cases, d, is a small number, on the order of 10°—107*

A similar paradoxical situation, when it is not possible to obtain a more accurate solution for a
greater number of iterations, sometimes occurs in the practice of MS calculations. To get out of this
situation, the following is suggested.

If the number of elements is small, then the vector discretized equation (3) can be solved by
direct methods, provided that the matrix D, is already known. It is reduced to a system with respect to
the magnetization vector M

R,-M=(A-D,)-M,=-H,, (5)
where R, = A — D,. In this case, no restrictions are imposed on the modulus of the maximum eigenva-
lue of the matrix R,,.

This method can be generalized. An approach that combines the advantages of direct and
iterative methods for solving SIE can be called the method of block iterations (MBI). The area of
magnets is divided into a small number of blocks m (where m < 20), which are united geometrically
and are in approximately the same magnetic conditions, however, the latter is insignificant. We will
perform (4) several general iterations over the entire system for an approximate determination of the
matrix D,. Numerical experiments show that only 5—10 iterations are enough for this. The matrix D,
is determined especially quickly for a linear medium.

Then we will perform block iterations. In this case, each block can be considered as a separate
magnetic system and calculated according to (4) by iterative methods. The influence of other blocks can
be considered as an external field. After the completion of the iteration process for the given block, we
adjust the elements of the matrix D, (but only for this block) and move on to the next block. Thus, after
performing iterations on all blocks, we obtain a solution for the magnetic system — the distribution of
the magnetization vector on all elements. The process ends when the relative deviation of the magnetic
induction vectors for adjacent iterations throughout the system is less than the specified value. That is,
Hﬂn 0-M, H /Hﬂn N H <¢. It is important here that the theorem on the convergence of the sequential itera-

tion method [4] is valid for each block, and therefore the block-by-block iteration process will con-
verge.

As shown by numerical experiments, the maximum modulus number of the matrix S,(B;) for
the iterative process (4) max|S,(B;)| < 1 in all blocks. Moreover, all conditioning numbers for matrices
Sx(B;), are, as a rule, smaller than the conditioning number of the entire matrix S,(G). The disadvan-
tage of this method is that it takes longer to solve the NLE.

The algorithm of the block iteration method can be described as follows:

1. k (for example, k£ = 5—10) iterations over the entire domain G according to the iterative
process (4). After that, the matrix D, and the magnetization vector M, are approximately determined.

2. In turn, in each block B, wherej = 1, m, the iterative process (4) is performed, keeping un-
changed the values of magnetization vectors for elements belonging to other blocks. The influence of
other blocks is taken into account as an external field. As a variant of the algorithm, the magnetization
vector can be obtained by the direct method (the Gaussian method with the selection of the main ele-
ment by column), but by solving system (5) instead of (4). In this case, if necessary, Tikhonov regula-
rization can be applied.

3. D, matrix is adjusted for the discretization elements belonging to the given block on the
magnetization curve of the material.

4. The transition to the next block is performed.
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5. Steps 2—4 are repeated for those SIEs, until the relative error of the magnetization vector
throughout the system becomes less than the specified one.

It is especially important that at stage 2 of the algorithm, direct and not iterative methods can
be applied when solving the discretized equation only for a given block, or iterative and direct me-
thods can be arbitrarily combined for different blocks. After all, the number of elements in the block is
significantly less than in the entire system. In this case, you cannot worry about the fact that the mod-
ule of the maximum eigenvalue of the system will be greater than one.

For example, consider the calculation of the
magnetic field of a typical flat two-dimensional MS, the
sketch of which is shown in Fig. 1. The geometry of the
MS is specially simplified to illustrate the proposed
method. To obtain a strong magnetic field, a specially
designed magnetic conductor is used, which must
concentrate the entire magnetic flux in a small gap below.
The magnetic wire of this MS consists of three
ferromagnetic rectangles of significantly different sizes:
the first has an area of 2, the second — 0.5, and the third
— 0.04 area units. The material of the magnet wire is
electrical steel, the calculation was carried out with a real
magnetization curve. As the primary source of the field, a
solid-magnet material (magnet) with a wvertical
magnetization of 0.7 T was chosen (element with an
arrow, lower left). The most important for the calculation is the field exactly in the smallest rectangle
of the MC. Therefore, it is theoretically advisable to break it down as small as possible. But if the
discretization of two large rectangles will be significantly different from the discretization in a small
one, then this will lead to a bad conditioning of the LAE. The opposite output — discretization into
approximately the same elements — will lead to a large number of them and significant program
runtime. Therefore, the proposed method of block iterations is a logical solution to such a problem.

In the tabl. 1—4 show the data for evaluating the convergence of the iterative processes of
calculating the magnetic field of a given MS according to the algorithm of the block-by-block iteration
method. Two modifications of the iterative process were considered: with the matrices S, = E+2(4 —
D,) and R, = A — D,. For the analysis in the process of computational experiments, the QR method was
used to calculate the values of the maximum and minimum values of the modulus of the eigenvalues
of the matrices of the corresponding blocks and the modulus of the conditioning number of the LAE
corresponding to certain discretizations. The numbering of the blocks in the tables corresponds to the
number specified when describing their sizes, and the parameters for the entire system are marked as a
block with the number 0. The second column of the tables shows the discretization parameters. The
first number indicates the number of divisions of the vertical side, the second - the number of divisions
of the horizontal side. Note that the magnet does not need to be discretized, so it adds only one ele-
ment. In the tabl. 1 and 2 show the results for the case of "satisfactory" discretization, and Tabl. 3 and
4, the discretization was emphatically irrational, because the elements had an elongated shape, which,
as practice shows, leads to poor conditioning of the LAE and, as a result, to poor convergence of the
iterative process. But in real complex systems, it is difficult to propose an ideal discretization, so it
was important to investigate the effect of "bad" discretization on the iterative process.

Analyzing the results of the numerical experiment, it can be seen that for all cases, the block
iteration method has better iterative properties than the general iterative process (block conditioning
number 0). Second, the R, matrix has better iterative properties than the S,, matrix for almost all dis-
cretizations. And in the case of "bad" discretization (Tabl. 4), the iterative properties of the matrix R,
are better than in the three previous cases.

Fig. 1. Calculated magnetic system
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Table 1. Matrix parameters S,

Block The number of Condition Module max. Module min. own
number discretization number own number number
elements
0 67 236.558 0.97762 0.004133
1 4x4 154.421 0.97652 0.006324
2 5x5 34.6258 0.97205 0.028073
3 5x5 97.0014 0.96398 0.009938

Table 2. Matrix parameters R,

Block | The number of dis- Condition Module max. Module min. own
number | cretization elements number own number number
0 67 78.6684 0.98881 0.0125693
1 4x4 76.4524 0.98822 0.0129265
2 5x5 66.7421 0.98602 0.0147737
3 5x5 53.1098 0.98198 0.0184898

Table 3. Matrix parameters S,

Block | The number of dis- Condition Module max. own | Module min. own
number | cretization elements number number number
0 84 343.5336 0.97437 0.002836
1 4%7 314.4429 0.96789 0.003078
2 8x5 245.8907 0.96708 0.003078
3 3x5 12.44069 0.91058 0.003933

Table 4. Matrix parameters R,

Block | The number of dis- Condition Module max. Module min. own
number | cretization elements number own number number
0 84 73.0886 0.98718 0.0135067
1 4x7 57.5418 0.98395 0.0170997
2 8x5 57.3264 0.98354 0.0171569
3 3x5 21.1625 0.95529 0.0451406
Conclusions

1. The method of block iterations has a wider field of application than the iteration method,
due to the fact that it allows you to effectively combine the advantages of direct and iterative methods
for solving the nonlinear discretized equation of magnetostatics.

2. The method of block-by-block iterations allows obtaining a reliable solution even in cases
where the method of iterations over the entire system (classical iteration method) diverges or leads to a
physically incorrect solution.

3. In the case of using direct methods of intra-block iteration, it is possible to effectively apply
the regularization of part of the Tikhonov equation.
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V3ATAJIBHEHUI CITOCIB BUPIIIEHHS PIBHAHHS MATHITOCTATUKHA
Cmousncskuii I1.C., Illampaii O.B.

OnHi€ro 3 BaKIMBUX 3a1a4 OOYUCITIOBATBHOI (DI3MKH 3aJMINAETHCS PO3pOOKa YHIBepcaabHHUX
AITOPUTMIB BUCOKOTOYHOT'O PO3PAaXyHKY 1 onTuMi3anii MarHiTocraTuuHux cucreM (MC) mis HemiHii-
HOT'O CepeZIOBUINA, CKIaIHOI TPbOXBUMIPHOI reoMeTpii MarHiTHOI CHCTEMH, a TaKOX CHJIBHUX TEPBU-
HUX TIOMIB, IO MOXYTb MPU3BOJUTH 0 HACHUYCHHS MarHiTONpoBOLY.

Haii6inpm yHiBepcaJbHUM Ta Cy4YaCHUM METOIOM po3paxyHkKy MC € MeTol CKIHYEHHX ene-
MmenTiB (MCE), mo peamizoBaHuii B 0araTb0X MPOMHCIOBUX MaKeTax mporpam. Aie Ied MeToa Mae
Oarato icroTHUX BaJ. MaOyTb, HAHTOJIOBHIMINM HEOMIKOM I[LOI'0 METOAY € MOoTpeda ITYYHO 3a/1aBa-
TH TPUOJM3HO HYJIBOBI KpaifloBi yMOBH MEPILIOrO POAY Ha ACSIKUX IPAHUIIX, 1100 0OMEeXHUTH 001aCTh
po3paxyHky. Lls obmacTh ckitamaeThes 3 00gacTi MarHeTukiB G Ta 00J1acTi HEMAarHITHOTO CEPEIOBUINA
P. Orxe, rpanuui obnacti P TOBOANUTHCS BHOMpATH MPHUOJIM3HO, IO JOAAE MOXHOKY PO3PaxyHKY.
Kpim Toro, B 1boMy MeToni moTpiOHO pO3paxoByBaTH MapaMeTpu Nons y Beiid obnacti D, sk B G Tak i
B P. Jlo peui, 11eli HEJOMIK BIACTHBUM TaKOX 1 MeTony cKiHueHuxX pizaumb. Merogu MCE ta MCP
HaJeXKaTh 10 Kiacy audepeHnialbHuX MeToniB. BoHn Ge3mocepenHbO ampoOKCHUMYIOTH TudepeHLia-
JIbHI PIBHSHHS Ta KpalioB1 yMOBH 3a1a4i po3paxyHky MC.

[ux HenomikiB mo30aBIeHUH KJIac METOAIB iHTErpalbHUX PIBHAHb. BOHM anmpoKCUMYIOTh iH-
TerpajibHi piBHSHHSA, 10 onucyioTh MC. Po3paxyHok mapameTpiB mois B MPOBOAUTHCS TUTBKU B 00-
nacTi MarHeTukiB G, a He BCiit obmacti D. Ciijy MOMITHUTH, 10 IHTErpaibHi METOIM MEHII JTOCIi/DKEHI,
HDK audepeHmianbHi Meronu. Tomy pearnizamisi TAKHX METOJIB L€ HE OTPUMAala HaJeKHOTO OOTpyH-
TyBaHHS B TOBHIN Mipi Ha JaHuil yac.

3okpema, pearizallis iTepalliifHiIX METOJIB JJIsl TAKUX PIBHSIHb CTABUTH IUTHHA PSIIT BIAKPUTUX
MUTaHb, O CTOCYIOThCS 301KHOCTI METOAY iTepalii 1 HeNiHIHUX IHTerpajJbHUX PiBHSIHD Ta BIUIUBY
XapakTepy IUCKpeTH3allii Ha iTepaliiiHe pimieHHs.
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