
Розділ 1. Математичне моделювання в природничих науках та інформаційні технології                    15 

 

DOI: 10.31319/2519-8106.2(47)2022.268335 
UDK 519.6:519.642:621.3.013 
P. Smolyansky, Ph.D., Associate Professor, sirius.ps@gmail.com 

О. Shamray, Ph.D., Associate Professor, elenashamdv@gmail.com  
Kryvyi Rih National University, Kryvyi Rih 

 
GENERALIZED METHOD OF SOLUTION OF MAGNETOSTATICS EQUATION 

 

Combinations of the method of solving the non-linear discretized leveling of magnetostatics 

for space-integrated levels in terms of bad efficiency or the complexity of the iterative process have 

been proposed. For which the method of block iterations is used, which can widen the area of 
stagnation, the lower iteration method, which is stable for the perfection of the non-linear alignment 

of magnetostatics. 
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Запропоновано комбінований метод вирішення нелінійного дискретизованого рівняння 

магнітостатики для просторових інтегральних рівнянь в разі розбіжності або поганої збіж-
ності ітераційного процесу. Для цього застосовується метод поблочних ітерацій, що має ши-

ршу область застосування, ніж метод ітерації, який застосовувався для вирішення нелінійно-

го рівняння магнітостатики. 

Ключові слова: магнітостатика, інтегральні рівняння, апроксимація, чисельне моде-
лювання. 

 
Formulation of the problem 

One of the important tasks of computational physics remains the development of universal al-

gorithms for high-precision calculation and optimization of magnetostatic systems (MS) for a nonli-

near environment, complex three-dimensional geometry of the magnetic system, as well as strong 
primary fields that can lead to saturation of the magneto conductor. 

The first method of such calculation is MS method of finite differences (FDM). Unfortunately, 

this method is effective only in the simplest areas of a special form.  

A more universal and modern method of calculation of MS is the finite element method 
(FEM) [1—2], which is implemented in many industrial software packages. But this method has many 

significant drawbacks. The main drawback of this method is the need to approximately set zero boun-

dary conditions of the first kind on some boundaries in order to limit the calculation domain D. Usual-
ly, the calculation domain D consists of the magnetic domain G and the non-magnetic medium P re-

gion, i.e. D = G U P. Therefore, the boundaries of the domain P in FEM has to be chosen approx-

imately, which adds to the calculation error. In addition, in this method, it is necessary to calculate the 
field parameters in the entire region D, both in G and in R. By the way, this drawback is also characte-

ristic of the FDM. The FEM and FDM methods belong to the class of differential methods. They di-

rectly approximate the differential equations and boundary conditions of the MS calculation problem. 

The class of methods of integral equations [3—6] is devoid of the mentioned shortcomings. 
They approximate the integral equations describing the MS. In this case, the field parameters are cal-

culated only in the region of the magnets G, and not in the entire region D. There is no need to specify 

the boundary conditions either. It should be noted that integral methods are less studied than differen-
tial methods. Therefore, the implementation of such methods has not yet received proper justification. 

In particular, the implementation of iterative methods for nonlinear integral equations raises a 

number of open questions concerning the convergence of the method of iteration of such equations 
and the influence of the nature of the discretization on the iterative solution. 

Analysis of recent research and publications 
There are two different approaches to the construction of integral equations of magnetostatics 

[3—6]. The first, the method of secondary sources [3], leads to equations for fictitious (calculated) 
field sources, distributed only on the boundary of the magnet region. The second approach [4—5], 

more modern and physical, leads to integral equations for spatially distributed field sources in the en-
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tire area of magnets, not only at the boundary. In this case, the field sources are physical field vectors 
or their linear combinations, which is an advantage of this method. Most often, equations are used for 

the vector of magnetization, intensity or induction of the magnetic field or their linear combinations. 

This method of calculation is often called the method of spatial integral equations (SІE) [5].  
At the first stage of SIE development, due to the insufficient speed of computer systems, the 

most urgent problem was the effective formation of a system of nonlinear equations (NLE) for a given 

discretization. Then, the solution of such NLE was reduced to the solution of the system of linear al-
gebraic equations (LAE) by linearizing the NLE by taking into account the nonlinear characteristics of 

the environment. At the same time, the number of discretization elements was relatively small, their 

shape varied slightly, so the LAEs for such magnetic systems were well determined. The computing 

power of modern computers allows to dramatically increasing the number of MC discretization ele-
ments. However, in some cases it is difficult to provide a satisfactory iterative solution of NLE for 

such tasks, although theoretically all the convergence conditions of the iteration method for SIE are 

fulfilled. 

Formulation of the purpose of the research 
So, at the current stage of SIE development, one of the most urgent problems is the solution of 

NLE and LAE due to the large number of discretization elements and their significant variation in siz-

es and shapes. In addition, another circumstance complicating the situation is that the LAEs for the 
considered methods are not symmetric and not sign-defined. This leads to the fact that sometimes the 

resulting LAE for such MCs becomes ill-conditioned. The consequence of this may be a violation of 

the convergence conditions of the iterative process in case of unsuccessful discretization. It is difficult 
to apply direct methods that could provide a more accurate solution of the LAE due to regularization 

due to the large dimension of the LAE and the nonlinear nature of the MS. It should be emphasized 

that the stage of formation of NLE and LAE for SIE requires much more time than their iterative solu-
tion. Therefore, increasing the time of the NLE solution due to more complex but effective algorithms 

will not lead to a noticeable increase in the total time of MS calculation, however, it can decisively 

affect the quality of the calculation of the parameters of the magnetic system. 

Presenting main material 
The article proposes a block-by-block algorithm for calculating magnetostatic fields using the 

SIE method, which allows combining the advantages of direct and iterative methods of solving LAE 

for MS. Next, the spatial integral equation of the field with respect to the calculated vector is consi-
dered: 

MHH/BU +=+= 20µ , 

where B — induction vector, H — field strength vector, M — magnetization vector [4]. 

In turn, this ratio can be written as, MHHU M +⋅+⋅= 22 0 . Here MH  — field strength 

created by the magnetization of the medium, a 0H  — the intensity of the external field, which is 

created by the primary sources of the field — stationary current sources that do not change in time, 

and permanent magnets, that is, ferromagnetism with a predetermined and known magnetization vec-

tor that is practically independent of the external field. In this case, the modified integral equation is 
valid [4] 

MПxHxU +⋅= )(2)( 0 ,                                                           (1)  

where MMNdvyMy,xKMП

G

y +⋅−⋅⋅⋅= ∫ ])()([2 σ . 

Here K(x,y) — symmetric tensor of the second rank with components Kij = (αi αj – δij )/R
m
; where 

m = 2,3 — dimension of space, αii  — guiding cosines of the radius vector R; δij — Kronecker symbol; 
changes in x,y are points in space, the integration is carried out only over the area of magnets G. For the 

case of a piecewise constant and isotropic medium, the parameter Nσ is zero [4]. We will consider only the 

isotropic medium used for the vast majority of MCs. 
Next, only the calculation of the class of two-dimensional systems will be considered for simplifi-

cation. The case of axisymmetric and three-dimensional systems is considered similarly to the case of 

two-dimensional systems. Equation (1) should be supplemented by the material magnetization curve  
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B = B(H), with the help of which you can find the scalar nonlinear dependence M = M(U) of the 
length of the vector M on the length of the vector U and connect these two quantities in one nonlinear 

integral equation. 

In these conditions, it is necessary to find the distribution of the calculated vector U, and then 
with the help of the magnetization curve, the distribution of the magnetization vector M can be ob-

tained. The field strength at any point can be obtained using integration over known field sources. 

To obtain a numerical solution, the domain of magnets G is divided into a set of elementary 
domains G = UGi in such a way that mes(Gi ∩Gj) = 0 for i ≠ j. Within the elementary region, the 

properties of the environment will be considered constant. Therefore, in each individual element Gi  

the magnetization is constant, and thus, equation (1) is approximated using a piecewise constant ap-

proximation of the vector M. 
Next, we turn to the discrete analog of equation (1). As a result, we will get a nonlinear vector 

equation relative to the values of the calculated vector )(xU , which is considered in the centers of 

gravit xi elements 

∑
=

+⋅+=
N

j

ijijii xMxMAxHxU

1

0 )()(2)(2)( .                                         (2) 

Here Aij — tensor of the second rank. It is obtained by integration over the domain Gj of the function 

K(x,y) and looks like 

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T,T

T,T
A . The components of the tensor determine the components of the 

field strength at point xi from the discretization element with number j. 

For a piecewise constant medium, equation (2) is significantly simplified. It is equivalent to 
the equation 

MSHMDAEHM ⋅+=−++= 00 2)22(2 .                                       (3) 

Matrix A consists of tensor cells Aij, Е — unit matrix. D cellular diagonal matrix in which 2×2 
cells are located on the main diagonal. On the diagonal of the i-th cells are written with the same value 

1/χi, and the other two elements of the cell are equal to zero. Here χi — value of the magnetic suscep-
tibility in the i-th element..  

The dimensionality of all matrices A, D and Е is equal to 2N, where N — number of discreti-

zation elements. This is true for two-dimensional and axisymmetric magnetic systems. For three-
dimensional systems, the considerations are similar, only the cell sizes will be 3×3, not 2×2.  

We immediately note, and this is important, that the matrix D is not constant, but depends on 

the vector M. Therefore, the iterative process for equation (3) must be modified in the following way 

nnn MSHM ⋅+=+ 01 2 ,                                                  (4) 

where Sn = E+2(A – Dn). 

In equation (4), there are actually two iterative processes: the main one with respect to the vec-

tor Мn, and the additional one with respect to the diagonal matrix Dn, which characterizes the proper-
ties of the ferromagnetic material. The size of the diagonal elements is recalculated according to the 

magnetization curve of the material after each iteration. The variable matrix Dn turns the iterative 

process (4) into a non-stationary one, which significantly complicates theoretical studies of the con-

vergence of such a process. However, these processes are not equivalent: the main difficulty is the 
iterative process with respect to the Мn vector. This iterative process is a simple iteration method and 

should theoretically converge [4] for any MS and types of materials according to the theorem on the 

norm of the integral operator of equation (1), because the norm of this operator is theoretically less 
than unity. 

But, as evidenced by the results of computational experiments, the module of the maximum 

eigenvalue of the matrix A can exceed unity as a result of the variation in the size and shape of the 

elements due to the instability of the computational process. Then sometimes the iterative process (4) 
will diverge. Another unpleasant circumstance is that the modulus of the minimum eigenvalue of the 

Sn matrix can be close to zero. It is known that if some eigenvalues of the matrix are equal to zero, 
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then such LAE has a non-unique solution. In practice, this can lead to "parasitic" solutions. Similar 
solutions for the discretized equation (4), which are caused by purely computational problems, will be 

called physically imprecise. This is caused by the fact that the eigenvalues of an unsymmetrical matrix 

are sometimes sensitive to rounding errors. In such cases, it is characteristic that the long iterative 
process (4) runs out (after 200—300 or more iterations). So, there can be two reasons for this: 

1) maximum modulus of the number of the Sn matrix will be greater than the modulus of unity: 

max|λ(Sn)| = 1+δn for the iterative process (4), where δn >0;  
2) minimum modulus number of the matrix min|λ(Sn)|<δn.  

In both cases, δn is a small number, on the order of 10
-6

—10
-8
. 

A similar paradoxical situation, when it is not possible to obtain a more accurate solution for a 

greater number of iterations, sometimes occurs in the practice of MS calculations. To get out of this 
situation, the following is suggested. 

If the number of elements is small, then the vector discretized equation (3) can be solved by 

direct methods, provided that the matrix Dn is already known. It is reduced to a system with respect to 
the magnetization vector М 

0)( HMDAMR nnn −=⋅−=⋅ ,                                            (5) 

where Rn = A – Dn. In this case, no restrictions are imposed on the modulus of the maximum eigenva-

lue of the matrix Rn. 
This method can be generalized. An approach that combines the advantages of direct and 

iterative methods for solving SIE can be called the method of block iterations (MBI). The area of 

magnets is divided into a small number of blocks m (where m < 20), which are united geometrically 
and are in approximately the same magnetic conditions, however, the latter is insignificant. We will 

perform (4) several general iterations over the entire system for an approximate determination of the 

matrix Dn. Numerical experiments show that only 5—10 iterations are enough for this. The matrix Dn 

is determined especially quickly for a linear medium. 
Then we will perform block iterations. In this case, each block can be considered as a separate 

magnetic system and calculated according to (4) by iterative methods. The influence of other blocks can 

be considered as an external field. After the completion of the iteration process for the given block, we 
adjust the elements of the matrix Dn (but only for this block) and move on to the next block. Thus, after 

performing iterations on all blocks, we obtain a solution for the magnetic system — the distribution of 

the magnetization vector on all elements. The process ends when the relative deviation of the magnetic 
induction vectors for adjacent iterations throughout the system is less than the specified value. That is, 

ε<− ++ 11 nnn M/MM . It is important here that the theorem on the convergence of the sequential itera-

tion method [4] is valid for each block, and therefore the block-by-block iteration process will con-

verge. 

As shown by numerical experiments, the maximum modulus number of the matrix Sn(Bj) for 
the iterative process (4) max|Sn(Bj)| < 1 in all blocks. Moreover, all conditioning numbers for matrices 

Sn(Bj), are, as a rule, smaller than the conditioning number of the entire matrix Sn(G). The disadvan-

tage of this method is that it takes longer to solve the NLE. 

The algorithm of the block iteration method can be described as follows: 
1. k (for example, k = 5—10) iterations over the entire domain G according to the iterative 

process (4). After that, the matrix Dn and the magnetization vector Mn are approximately determined. 

2. In turn, in each block Bj, where j = 1, m, the iterative process (4) is performed, keeping un-
changed the values of magnetization vectors for elements belonging to other blocks. The influence of 

other blocks is taken into account as an external field. As a variant of the algorithm, the magnetization 

vector can be obtained by the direct method (the Gaussian method with the selection of the main ele-
ment by column), but by solving system (5) instead of (4). In this case, if necessary, Tikhonov regula-

rization can be applied. 

3. Dn matrix is adjusted for the discretization elements belonging to the given block on the 

magnetization curve of the material.  
4. The transition to the next block is performed. 
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5. Steps 2—4 are repeated for those SIEs, until the relative error of the magnetization vector 

throughout the system becomes less than the specified one. 

It is especially important that at stage 2 of the algorithm, direct and not iterative methods can 

be applied when solving the discretized equation only for a given block, or iterative and direct me-

thods can be arbitrarily combined for different blocks. After all, the number of elements in the block is 

significantly less than in the entire system. In this case, you cannot worry about the fact that the mod-

ule of the maximum eigenvalue of the system will be greater than one. 

 For example, consider the calculation of the 

magnetic field of a typical flat two-dimensional MS, the 

sketch of which is shown in Fig. 1. The geometry of the 

MS is specially simplified to illustrate the proposed 

method. To obtain a strong magnetic field, a specially 

designed magnetic conductor is used, which must 

concentrate the entire magnetic flux in a small gap below. 

The magnetic wire of this MS consists of three 

ferromagnetic rectangles of significantly different sizes: 

the first has an area of 2, the second — 0.5, and the third 

— 0.04 area units. The material of the magnet wire is 

electrical steel, the calculation was carried out with a real 

magnetization curve. As the primary source of the field, a 

solid-magnet material (magnet) with a vertical 

magnetization of 0.7 T was chosen (element with an 

arrow, lower left). The most important for the calculation is the field exactly in the smallest rectangle 

of the MC. Therefore, it is theoretically advisable to break it down as small as possible. But if the 

discretization of two large rectangles will be significantly different from the discretization in a small 

one, then this will lead to a bad conditioning of the LAE. The opposite output — discretization into 

approximately the same elements — will lead to a large number of them and significant program 

runtime. Therefore, the proposed method of block iterations is a logical solution to such a problem. 

In the tabl. 1—4 show the data for evaluating the convergence of the iterative processes of 

calculating the magnetic field of a given MS according to the algorithm of the block-by-block iteration 

method. Two modifications of the iterative process were considered: with the matrices Sn = E+2(A – 

Dn) and Rn = A – Dn. For the analysis in the process of computational experiments, the QR method was 

used to calculate the values of the maximum and minimum values of the modulus of the eigenvalues 

of the matrices of the corresponding blocks and the modulus of the conditioning number of the LAE 

corresponding to certain discretizations. The numbering of the blocks in the tables corresponds to the 

number specified when describing their sizes, and the parameters for the entire system are marked as a 

block with the number 0. The second column of the tables shows the discretization parameters. The 

first number indicates the number of divisions of the vertical side, the second - the number of divisions 

of the horizontal side. Note that the magnet does not need to be discretized, so it adds only one ele-

ment. In the tabl. 1 and 2 show the results for the case of "satisfactory" discretization, and Tabl. 3 and 

4, the discretization was emphatically irrational, because the elements had an elongated shape, which, 

as practice shows, leads to poor conditioning of the LAE and, as a result, to poor convergence of the 

iterative process. But in real complex systems, it is difficult to propose an ideal discretization, so it 

was important to investigate the effect of "bad" discretization on the iterative process. 

Analyzing the results of the numerical experiment, it can be seen that for all cases, the block 

iteration method has better iterative properties than the general iterative process (block conditioning 

number 0). Second, the Rn matrix has better iterative properties than the Sn, matrix for almost all dis-

cretizations. And in the case of "bad" discretization (Tabl. 4), the iterative properties of the matrix Rn 

are better than in the three previous cases. 

 

 

 
 

Fig. 1. Calculated magnetic system 
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Table 1. Matrix parameters Sn 
 

Block 

number 

The number of 

discretization 

elements 

Condition  

number 

Module max. 

own number 

Module min. own 

number 

0 67 236.558 0.97762 0.004133 

1 4×4 154.421 0.97652 0.006324 

2 5×5 34.6258 0.97205 0.028073 

3 5×5 97.0014 0.96398 0.009938 
 

Table 2. Matrix parameters Rn 
 

Block 

number 

The number of dis-

cretization elements 

Condition  

number 

Module max. 

own number 

Module min. own 

number 

0 67 78.6684 0.98881 0.0125693 

1 4×4 76.4524 0.98822 0.0129265 

2 5×5 66.7421 0.98602 0.0147737 

3 5×5 53.1098 0.98198 0.0184898 
 

Table 3. Matrix parameters Sn 
 

Block 

number 

The number of dis-

cretization elements 

Condition  

number 

Module max. own 

number 

Module min. own 

number 

0 84 343.5336 0.97437 0.002836 

1 4×7 314.4429 0.96789 0.003078 

2 8×5 245.8907 0.96708 0.003078 

3 3×5 12.44069 0.91058 0.003933 
 

Table 4. Matrix parameters Rn 
 

Block 

number 

The number of dis-

cretization elements 

Condition  

number 

Module max. 

own number 

Module min. own 

number 

0 84 73.0886 0.98718 0.0135067 

1 4×7 57.5418 0.98395 0.0170997 

2 8×5 57.3264 0.98354 0.0171569 

3 3×5 21.1625 0.95529 0.0451406 

 

Conclusions 
1. The method of block iterations has a wider field of application than the iteration method, 

due to the fact that it allows you to effectively combine the advantages of direct and iterative methods 

for solving the nonlinear discretized equation of magnetostatics. 

2. The method of block-by-block iterations allows obtaining a reliable solution even in cases 
where the method of iterations over the entire system (classical iteration method) diverges or leads to a 

physically incorrect solution. 

3. In the case of using direct methods of intra-block iteration, it is possible to effectively apply 
the regularization of part of the Tikhonov equation. 
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УЗАГАЛЬНЕНИЙ СПОСІБ ВИРІШЕННЯ РІВНЯННЯ МАГНІТОСТАТИКИ 
Смолянський П.С., Шамрай О.В. 

 

Однією з важливих задач обчислювальної фізики залишається розробка універсальних 

алгоритмів високоточного розрахунку і оптимізації магнітостатичних систем (МС) для неліній-
ного середовища, складної трьохвимірної геометрії магнітної системи, а також сильних перви-

них полів, що можуть призводити до насичення магнітопроводу.  

Найбільш універсальним та сучасним методом розрахунку МС є метод скінчених еле-
ментів (МСЕ), що реалізований в багатьох промислових пакетах програм. Але цей метод має 

багато істотних вад. Мабуть, найголовнішим недоліком цього методу є потреба штучно задава-

ти приблизно нульові крайові умови першого роду на деяких границях, щоб обмежити область 
розрахунку. Ця область складається з області магнетиків G та області немагнітного середовища 

P. Отже, границі області Р доводиться вибирати приблизно, що додає похибку розрахунку. 

Крім того, в цьому методі потрібно розраховувати параметри поля у всій області D, як в G так і 

в Р. До речі, цей недолік властивий також і методу скінчених різниць. Методи МСЕ та МСР 
належать до класу диференціальних методів. Вони безпосередньо апроксимують диференціа-

льні рівняння та крайові умови задачі розрахунку МС. 

Цих недоліків позбавлений клас методів інтегральних рівнянь. Вони апроксимують ін-
тегральні рівняння, що описують МС. Розрахунок параметрів поля в проводиться тільки в об-

ласті магнетиків G, а не всій області D. Слід помітити, що інтегральні методи менш досліджені, 

ніж диференціальні методи. Тому реалізація таких методів ще не отримала належного обгрун-
тування в повній мірі на даний час. 

Зокрема, реалізація ітераційних методів для таких рівнянь ставить цілий ряд відкритих 

питань, що стосуються збіжності методу ітерації для нелінійних інтегральних рівнянь та впливу 

характеру дискретизації на ітераційне рішення. 
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