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FEATURES OF THE IMPLEMENTATION OF THE ECONOMIC DIFFERENCE SCHEME
OF VARIABLE DIRECTIONS WHEN SOLVING THE PROBLEM OF MELTING A
WEIGHTED COMBINED ALUMINUM-CONTAINING DEOXIDIZER
IN A PROTECTIVE SHELL

The purpose of this article is to study the efficiency of using an economical alternating direc-
tion difference scheme in solving the problem of melting a weighted combined aluminum-containing
cylindrical deoxidizer in a protective shell in the melt and under asymmetric boundary conditions at
the slag-metal interface. Such a problem refers to problems of heat conduction with moving phase
boundaries. When solving such problems of mathematical physics, the computational costs for solving
difference analogues of partial differential equations are decisive, which increase sharply with upscal-
ing in the nodes of the computational grid, especially in two- and three-dimensional spaces. The use of
an economical difference scheme of alternating directions in solving the problem of melting a
weighted combined aluminum-containing cylindrical deoxidizer in a protective shell makes it possible
to reduce the calculation time by an average of ten percent.

Keywords: economical difference scheme, alternating direction method, simulation of melting
of an aluminum-containing deoxidizer.

Memoro danoi cmammi € 00cniONceH s eqheKMUBHOCI GUKOPUCARHS eKOHOMIYHOT pi3HUYe-
801 cXeMu 3MIHHUX HANPAMKIE NPU SUPIWEHHT 3A0ayi NIAGNEeHHS 008ANCEH020 KOMOIHOBAHO20 ATHOMO-
BMICIKO20 PO3KUCTIOBAYA YUNTHOPUUHOT popMU 8 3aXUCHTTL 0O0IOHYI 8 PO3NAAGI | 34 HECUMEMPUUHUX
SPAHUYHUX YMO8 HA Midchaswil medici wnak-vweman. Taka 3a0aua 6iOHOCUMbC 00 3a0a4 Menionpo-
8IOHOCMI 3 pyXomMumu medxicamu posnodiny gasz. Ilpu eupiwenni nodionux 3adauw mamemamuynoi ¢i-
3UKU BUSHAYATLHUMU € 00UUCTIOBANbHI BUMPAMU HA PILUEHHs DI3HUYe8UX aHano2ie oughepeHyianvHux
PIBHAHb 8 YACTNUHHUX NOXIOHUX, SIKI PI3KO 3p0Cmaromy 3i 30L1bUEeHHIM 8Y37i8 PO3PAXYHKOBOI CImKU,
0c00UB0 Y 060~ I MPUBUMIPHUX NPOCTNOPAX. BUKOpUCMAaHHA eKOHOMIUHOT Pi3HUYeB0T cXxeMu 3MIHHUX
HANpsMKi6 npu eupiuienHi 3a0aui NIAGNEeHHs 008ANCEHO20 KOMOIHOBAHO20 ANHOMOBMICIMKO20 PO3KUC-
06a4a YUNIHOPUYHOL popMu 8 3aXUCHTTI 0OO0AOHYT 00368018€ IMEHIUUTNU YAC GUKOHAHHSL PO3PAXYHKIE 8
CcepeOHbOMY HA 0ecimb 8i0COMKIB.

Knrwouosi cnosa: exonomiuna CKiHUEHHO-PIZHUYEBA cXeMd, Memoo0 3MIHHUX HANPAMKIE, MOOe-
JIFOBAHHA NAAGNIEHHA ANIOMOBMICIKO20 PO3KUCTIOBAYA.

Formulation of the problem

One of the resource-saving solutions for the deoxidation of steel with aluminum is to increase
the density of the aluminum ingot by introducing a weighting agent and simultaneously isolating its
surface from the influence of oxidizing slag [1]. The problem of melting such a weighted combined
aluminum-containing deoxidizer of a cylindrical shape in a protective shell in the melt and under
asymmetric boundary conditions at the slag-metal interphase boundary refers to the problems of ther-
mal conductivity with moving boundaries of the phase distribution.

Heat and mass transfer processes in systems with moving phase boundaries are described by
nonlinear partial differential equations. The field of application of analytical methods for the study of
this kind of processes is very limited. Therefore, the most effective calculation of transfer processes
when the aggregate state changes is associated with the use of numerical methods [2].

The numerical solution of boundary value problems for ordinary differential equations and
partial differential equations is one of the central problems of mathematical modeling in this area. The
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choice of effective methods (direct and iterative) plays an important role in solving systems of linear
equations of high order with matrices of a special form resulting from the approximation of differen-
tial equations. When choosing one or another numerical method and algorithm, many circumstances
are considered, such as the volume of calculations, the required amount of RAM, the order of accura-
cy, stability in relation to rounding errors, and others.

Analysis of recent research and publications

Conducting computational experiments using classical sequential algorithms of grid methods
[3-5], it was concluded that when solving similar problems of mathematical physics, the computation-
al costs for solving difference analogues of ordinary differential equations and partial differential equ-
ations, which increase sharply with the increase of nodes, are decisive calculation grid. Therefore, the
issue of their effective implementation is particularly relevant.

The numerical study of non-
stationary processes of heat transfer in two-
and three-dimensional spaces is fundamen-
tally more difficult than the solution of
problems in the one-dimensional case. At
the same time, the construction of differ-
ence analogs of boundary value problems
does not cause difficulties [6, 7]. So, for

i, j+1 . .
example, for the two-dimensional heat con-
duction equation.
2 2
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the following approximations can be easily

Fig. 1. Template of finite-difference approximation obtained by replacing each of the deriva-
tives with their finite-difference analogues

according to the template (Fig. 1)
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At Ax Ay
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At Ax Ay

where t;f j is the temperature at the point with coordinates (x;, y;) at the moment of time 7, (x;= iAx,

=jAy, 1, = nAt); Ay is a step along the y coordinate. However, the volume of calculations required for
the implementation of difference schemes (2), (3) increases significantly compared to similar one-
dimensional problems. In the case of the explicit scheme (2), this is related to its conditional stability
and the consequent necessity to take very small values. In the case of the implicit scheme (3), the in-
crease in the volume of calculations is due to the fact that the resulting system of equations contains 5
unknowns in each equation. Therefore, for the solution of such a system of equations, the running me-
thod cannot be applied, and it is necessary to use much more time-consuming methods (for example,
the Gaussian method). It is proved that a complete calculation according to scheme (2) requires ~ N*
actions, and according to scheme (3) = N° actions, where N is the number of nodes for each of the spa-
tial coordinates. In the case of three-dimensional problems, these indicators are even higher: ~ N’ ac-
tions for an explicit scheme; ~ N?® actions for an implicit scheme. Thus, in terms of the amount of cal-
culations, the explicit scheme turns out to be even more profitable than the implicit scheme. At the
same time, the implicit scheme has its own positive quality — it is absolutely stable.

The question arises: is it possible to build a scheme that combines the best qualities of explicit
and implicit schemes, that is:

1) unconditionally stable, as an implicit scheme;
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2) requires the transition from layer to layer of computing costs, proportional to the number of
grid nodes, as a clear scheme.

Formulation of the purpose of the research

The effort to combine these positive properties of explicit and implicit difference schemes led
to the creation of the so-called economic difference schemes. A finite-difference scheme is called eco-
nomical if the number of performed operations is proportional to the number of grid nodes. Currently,
a significant number of economic difference schemes for the numerical solution of multidimensional
problems of mathematical physics are known, based on the splitting of spatial differential operators
along the coordinate directions and the use of the scalar run method along these directions [7].

The most widespread of them were the schemes based on the splitting method. Fractional step
methods developed in the late 1950s and early 1960s by Academician M.M. Yanenko and his school
[8] proved to be fruitful both in solving a huge class of problems in the mechanics of continuous envi-
ronments, but also became a motivating factor for the search for new economic methods numerical
solution of the specified class of problems. As a result of the application of this method, the calcula-
tion at each time interval is divided into a number of separate stages and the solution of multidimen-
sional problems is reduced to the solution of a sequence of one-dimensional problems using an effi-
cient method of running.

One of the best difference schemes for solving two-dimensional non-stationary heat conduc-
tion problems is the scheme of alternating directions or the longitudinal-transverse scheme. The es-
sence of this scheme is that the time step At xi is divided into two half-steps, i.e. the transition from
the moment of time 7, to the moment of time 7, is carried out through the intermediate time layer
Tor1n = Tn T AT/2. At the first half-step, the second derivative along one of the coordinates (for exam-
ple, along y) is approximated explicitly (using the temperatures on the time layer z,), and the second
derivative along the second coordinate is approximated implicitly (using the temperatures on the half-
integer step 7,+12). In the second half-step, on the contrary, the implicit approximation (using the tem-
peratures at the step 7,+1) is used only in the y direction, and the explicit approximation is used in the x
direction (using the temperatures at the step 7,+1,).

Presenting of the main material
For our problem, the scheme of the method of variable directions looks like this
Subscheme 1

n+1/2 n n+1/2 n+l/2 n+1/2 n n n
S I L N e R A N R o e W W 2 @)
At/2 Ax2 AY?
Subscheme 2
n+l n+1/2 n+l/2 n+l/2 n+l/2 n+l n+l n+l
tij 1t tiy” —2 Tttt t 2 g
=a 5 +a 5 . 5
At /2 Ax Ay

i=1,..,I-1;j=1,..,J-1;n=0,..,N—1.
Differential formulation of boundary conditions

o =i, 1,);i=0,...,L,j=0;n=0, ..., N;
4y =% 0); =0, ..., Lj=J;n=0,..,N;
t(’ij =030 7,);i=0;j=0,..,5,n=0,..,N;
(=00 ) i=Ej=0,..,n=0,...,N.

Initial condition

D= 1) i=0, . Lj=0, .., J;n=0.

The difference scheme (4) — (5) is definitely stable, it converges at a rate of 0(Ax* + Ay* + At?)

t

[5—T7].
In subscheme 1, at the first fractional step Az/2 the approximation in x is taken implicitly, and
in y explicitly.
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Let's write (4) in the form

i=1,...,I— 3= 0,...,J,n 0,...,N—1.
A A A A A
ne A; = a Tz;Bl-z a Tz;Ci=1+a ;;Ajz a TZ;sz a Z-Z;Cj=1+£§;
2Ax 2Ax Ax 2Ay 2Ay Ay

F Atl]l

The SLE has a trldlagonal form and can be solved using the method of running along the x-
axis. With the help of runs in the amount equal to the number J — 1, in the direction of the variable x,

we obtain the distribution of the grid function t”+1/2 i=1,.,1-1;j=1, .., J—1 on the first-time

C t :+B; tl]+1

half-interval 7, . 1, = 1, + AT/2.

In subscheme 2, the approximation along y is taken implicitly at the time interval z,,; =
(nt+1)A7, and along x — explicitly at the moment of time 7,1, = 7, + A7/2.

Let's write (5) in the form

At;’jll—Ct”“wtl”jil— ~F;, (7)
j=1,..,J-1i=0,..,Ln=0,..,N-1.
aAt aAt aAt aA alAt alAt
il Al'= Z’Bi: Z,Cl'=1+ Z,AJZ 2,B = Z,C =1+ 2,
2Ax 2Ax Ax 2Ay 2Ay Ay
Fy= 452 =l TV 2 4 B2

The SLE has a tridiagonal form and
can be solved using the method of running
along the y axis. With the help of runs in the
amount equal to the number 7 — 1, in the di-
rection of the variable y, we obtain the distri-

=,

I,j=1,..,J—1 on the second time half-
slice 7,41 = T2 + AT/2.

The template of the scheme of varia-
ble directions is presented in fig. 2.

Calculations of the melting of a
weighted combined aluminum-containing
deoxidizer of a cylindrical shape in a protec-
tive shell in the melt and under asymmetric
boundary conditions at the slag-metal inter-

O

PN

bution of the grid function ¢

X g A face according to the classical finite-
71 A2 difference scheme are given in [3]. The as-
N sumptions used in the calculations, the condi-

tions for introducing the deoxidizer and the
types of deoxidizer depending on the alumi-
n num content are also described there. In this
work, with the same initial data, computa-
tional experiments were conducted using the
AL Y economic difference scheme of variable di-
i jt1 rections. This made it possible to reduce the

Fig. 2. Template of the scheme of variable time of calculations by an average of 10 per-
cent, which is quite a good result.

directions
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Conclusions

Taking into account the peculiarities of the implementation of the economic difference scheme
of variable directions when solving the problem of melting a weighted combined aluminum-containing
deoxidizer of a cylindrical shape in a protective shell in the melt and under asymmetric boundary con-
ditions at the slag-metal interphase boundary, it is possible to significantly reduce the computational
costs for solving the difference analogues of ordinary differential equations and equations in partial
derivatives. The results of computer experiments allow us to establish rational modes of introduction
of such a deoxidizer, which provide the most favorable conditions for their melting in a steel ladle in
the process of releasing metal from an oxygen converter.
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OCOBJMBOCTI PEAJIIBAIIII EKOHOMIYHOI PI3BHUIIEBOI CXEMH 3MIHHUX
HAITPAMKIB ITPU BUPIHNEHHI 3AJTAYI ITIJTIABJEHHSA OBBAKEHOI'O
KOMBIHOBAHOI'O ATIOMOBMICTKOI'O PO3KHCJIJIIHOBAYA

B 3BAXUCHII OBOJIOHIII

Bosaomun P.B., Badenxo M.B., Jlumap H.M., 'pomoBoii A.A.

Meroro maHoi cTaTTi € IOCHiIKEeHHS! e)eKTUBHOCTI BUKOPUCTAHHS €KOHOMIYHOI pi3HUIEBOT
CXEMH 3MIHHUX HaIlpsIMKIB MpY BHUPIIICHHI 3a7a4i MJIaBJIeHHS 00Ba)KEHOr0 KOMOIHOBAHOTO aJIFOMOB-
MICTKOTO pO3KHCIIIOBaYa IUITIHAPUYHOI POpPMHU B 3aXUCHIH 0OOJOHII B PO3IUIABI 1 38 HECUMETPUUHUX
TpaHUYHHUX YMOB Ha Mik(a3zHiil Mexi mutak-meran. Taka 3amada BITHOCUTBCS 10 3aAa4 TEIUIONPOBi-
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HOCT1 3 PyXOMUMH MeXaMu po3noainy ¢as. [Ipu BupimeHHi momiOHUX 3a7ad MaTeMaTHYHOI (Qi3HKH
BHU3HAYAJIHHUMH € OOYUCIIOBAIbHI BUTPATH Ha PIllICHHS Pi3HULEBUX aHAJIOrIB IUQepeHLialbHUX PiB-
HSIHb B YaCTHHHHX MOXITHHX, SIKi Pi3KO 3pOCTAIOTh 31 30UIBIIEHHSIM BY3JIiB PO3PaXyHKOBOI CITKH, OCO-
ONMBO y ABO- 1 TPMBUMIPHUX MPOCTOpax. Y BUMAIKY SIBHOI CXEMHU 1€ TIOB'si3aHe 3 i1 YMOBHOIO CTiliKic-
TI0. Y BHUIIQJKY HESIBHOI CXEMH 3pOCTaHHSA 00'eMy OOYHMCIICHb MOB'SI3aHE 3 THM, L0 OJEPXKYBaHa CHC-
TeMa piBHSIHb MICTHTH MO 5 HEBIOMHUX B KOXKHOMY PiBHSHHI, aje HeIBHA CXeMa Ma€ CBOIO IO3UTUBHY
AKICTh — BOHA aOCOJIOTHO CTilKa.

[IparnenHs 3'€eqHATH MO3UTUBHI BIACTUBOCTI SIBHUX 1 HEABHHUX PI3HULIEBUX CXEM IPHUBEIO 0
CTBOpPEHHSI TaK 3BaHMX CKOHOMIUHUX PI3SHULIEBHX CXEM.

OpHie€l 13 KpaluX Pi3HUIIEBUX CXEM JJIS PIllICHHs JBOMIPHUX HECTAI[IOHAPHUX 3a/1a4 TeIlIOoMN-
POBIHOCTI € cXeMa 3MIHHUX HalpsIMKiB a00 MOAOBXKHbO-TIoNepeuHa cxema. CyTh Li€i cXxeMH mossrae
B TOMY, II0 KPOK 3a 4acoM JiMTUThbCS Ha J1Ba MiBKpokd. Ha meprmomy miBKpoKy Apyra moxigHa mo on-
Hill 3 KOOpAUHAT (HaNPUKIAMI, IO V) alPOKCUMYETHCS SIBHO, a Apyra MOXiJHa Mo APYTid KOOpAMHATI —
HesiBHO. Ha nmpyroMy miBKpOKy, HaBIakH, HEsSBHA alpOKCHMALlisi BUKOPHCTOBYETHCS TUIBKU IO Ha-
MPSIMKY V, a [0 HANpsIMKY X 3aCTOCOBYETHCS SIBHA allPOKCUMAIIIS.

BukopuctanHs €KOHOMIUHOI Pi3HMIEBOI CXeMH 3MIHHMX HampsMKiB IpH BHUPILICHHI 3a7adi
IUTaBJICHHS! OOBa)KEHOI'0 KOMOIHOBAHOTO allFOMOBMICTKOTO PO3KHCIIOBAayYa LIIIHAPUYHOI (HOpMH B
3axXMCHIA OOONOHLI JO3BOJISIE 3MEHIIMTH Yac BUKOHAHHA PO3PaxyHKiB B CepeIHBOMY Ha JAECSThH
BiZICOTKIB.
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