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At work, the issue of hourly forecasting of electricity consumption has been examined. Based
on the input data in the form of a time series of electricity consumption over a specific period, short-
term forecasting has been performed using a recurrent neural network (RNN). The choice of RNN
architecture, the number of layers, as well as the choice of activation functions and optimization algo-
rithms are considered in detail. The selection of hyperparameters, such as learning rate, is also dis-
cussed. The training and validation process is described, including the division of data into training,
validation, and testing sets. It discusses the use of relevant metrics to evaluate the accuracy of fore-
casting using RNN.

Keywords: recurrent neural network, multilayer perceptron, artificial neural network, EIman
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Bpaxosyrouu spocmanns nasanmasicennss Ha enepeemuyHi cucmemu ma 3HouleHicms ingpa-
CMPYKMYpU CAMUX mepedic, neped CyyacHumMu OOCTIOHUKAMU NOCMANO 3A60AHHS HAGUUMUCS eheKxmu-
6HO YNPAGIAMU MA POZNOOLIAMU HABAHMANCEHHS, MIJNC CRONACUBAYAMU Y NPOCTOPOBOMY T TMUMYA-
COBOMY KOHMEKCMI Y HOBOMY eHepeemudnomy npocmopi. Ilompiono cmeopumu HOGI cucmemu ynpas-
JHHS, AKI 8 peanbHoMY Yaci Oy0yme He MinbKu HALAWmosy8amu napamempu OKpemux 8y3ie enepeo-
Mepedxci, a Ul peopeaHizogysamu il cmpyKmypy Ha 6Cix pigHsx, maudce 00 3MIHU 00Cs2i8 01 camux
cnoolcusauig. J{is maKux cucmem YnpasiinHa HeoOXiOHUtl MOYHULL NPOSHO3 CRONCUBAHHSL enepaii, oo
3a30a1e2i0b cmeopumu naan nepepo3nooily Haganmagicents. Haubinbuy mounicmes npoenosy 0aoms
cucmemu, no6y008ani Ha OCHOBE WMYUHO20 iHmenekmy. Tounicms npocHo3y, 3acHO8AHO20 HA BUKOPU-
CMAHHI HEUPOHHUX MEPedAC, 3ANeHCUMb 8i0 HAAGHUX GUXIOHUX OAMUX, WO BUSHAYAIOMb APXINEKmYpy
mepedxct, CmyneHsi 00CMOGIPHOCMI OaHUX Md HeOOXIOH020 Nepiody NPOCHO3Y8AHHSL.

B oaniu pobomi posensinymo npobaemy no2oouHHo20 npoSHO3Y6AHHs CNONCUBANHHS eleKmpoe-
nepeii. Ha ocnosi 6xionux oanux y euensoi 4aco8oz2o psaoy CHONCUBANHS eleKMpPOoeHepeii 3a nesHull
nepioo, 30ilCHEHO KOPOMKOCMPOKO8E NPOSHO3VEAHHS 3 O0NOMO2010 HEUPOHHOT PeKYPEeHmHoi Mepeici
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(RNN). [lemanvno pozensoacmocs eubip apximexmypu RNN, xinoxocmi wapis, a maxoac eubip pynx-
yitu akmusayii ma anreopummie onmumizayii. Taxooc 0b2oeopoemvcst 6ubIp cinepnapamempie, siK-om
weuoKicmy HaguanHs. ONucyemvcs Npoyec HAGYAHHA Ma NepesipKu, BKI0Uaoyu nooil 0anux Ha Ha-
6UANbHI, Nepegipouni ma mecmosi Habopu. Y HbOMY 002080pIOEMbCS GUKOPUCMAHHSA BIONOBIOHUX
NOKA3HUKIG OJ1 OYIHKU MOYHOCMI NPpo2HOo3y8anHs 3a donomozoro RNN.

Tlobyodosarno mepedicy i nidibpano onmumanvhi napamempu 0is it pobomu. A makoosic cnpoe-
xkmosarno UML oiaepamu, 6 sxux uimxo 6i0o6pajiceno, ax came NOSUHHA NPAYKOBAMU CUCTEMA | AKUM
BUMO2AM NOGUHHA GIONO0GIOamu, po3pod.aeHi cyeHapii pobomu cucmemu ma UKOHAHO iX NPOSPAMHY
peanizayiio.

Ilpeocmasneni pesynomamu ma oyiHKa eQekmueHoCmi MOOei NPOSHO3YEAHHS CNONCUBAHHSL
enexmpoenepeii Ha ocnosi RNN. [le 3abesneuye ananiz mounocmi ma epexmusHocmi mooeni npu
NPOSHO3YB8ANHHI CHOJNCUBAHHSL eNeKMPOEHEP2Ii OISl PIHUX 4acOo8UX 20pu3onmie. B pamxax docniocenns
PO32IAHYMO NpoOIEMY NO20OUHHO20 NPOSHO3VEAHHA CHOJICUBAHHA enekmpoenepeii. [Ipedcmasneno
eMnipuuni pe3yromamu 00CHIONCeHHsl, AKi 0eMOHCMPYIOMb eQeKMUBHICIb PEeKYPEHMHUX HeUPOHHUX
mepedxc 8 nopisHanHi i3 mpaouyitinumu memooamu, maxkumu sk ARIMA ma SV y npoenosyeanni cno-
HCUBAHMHSL eTIeKMPOEHeP2Ii.

Knrwwuosi cnosa: pexypenmmua mnetiponna mepedica, 6a2amoulaposuti nepcenmpoH, Wmyyna
HelpoHHa Mepedica, Mepedica Envana, aneopumm 360pomno2o nouupenHs noxuoKu.

Problem’s Formulation

In the conditions of the formation of market relations in electricity, the task of improving the
methods of short-term forecasting of electricity consumption and creating appropriate software to in-
crease the accuracy of planning optimal modes of electricity systems is important and relevant. In-
creasing the accuracy of planning involves ensuring the most economical operation of electric power
systems with rational consumption of energy resources and meeting the requirements of reliability of
energy supply and quality of electricity. Load forecasts play a crucial role in electricity pricing in the
wholesale electricity market and capacity planning, becoming increasingly important for both elec-
tricity producers and consumers.

Considering the increasing load on power systems and the aging infrastructure of the networks
themselves, modern researchers face the task of efficiently managing [1] and distributing [2] the load
among consumers in a spatial and temporal context in the new energy landscape. The issue of overall
energy system stability in Ukraine has become particularly acute following the onset of a large-scale
invasion. To address these challenges, management based on load forecasting in different parts and at
different times of system operation, as well as flexible resource reallocation, is necessary. For the new
energy grid, new management systems need to be developed that will not only adjust the parameters of
individual nodes in the energy grid in real-time but also restructure it at all levels, even to the extent of
altering the volumes for consumers themselves. Accurate energy consumption forecasting is essential
for such management systems to proactively create load redistribution plans.

Analysis of recent research and publications

The accuracy of forecasting depends on the calculation methods. There is a wide range of
models and methods for short-term load forecasting. At the current stage of development of short-term
load forecasting, a large number of methods and models are proposed. The main ones include methods
of mathematical statistics, data processing, regression analysis, neural networks, fuzzy logic, hybrid
systems, database theory, and relational database construction technology [3].

The highest forecast accuracy is provided by systems built with artificial intelligence in mind.
The accuracy of the forecast based on the application of artificial intelligence methods depends on the
available initial data that determine the network architecture, the degree of reliability of the data and
the required forecasting period. The application of hybrid networks shows promise [2].

For example, works [4,5] investigate the problem of improving the hybrid approach to the de-
velopment of informal mathematical models for forecasting electricity consumption of a large regional
supplier based on the combined application of modern information technologies using the apparatus of
artificial neural networks and Kalman filters.
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Avrticles [6, 7] are dedicated to the use of neural networks for energy consumption forecasting.
In the study [6], the author employed deep learning neural networks and used an error function that is
a combination of mean squared error and quantile regression error for their training. The results of the
studies confirm that using neural networks for energy consumption forecasting is an effective method
due to the time-dependent and random nature of electrical load variations, which are influenced by
various internal and external factors.

In the work [8], the application of artificial neural networks for forecasting energy consump-
tion in production systems, considering archival data for a set of energy efficiency indicators, is dis-
cussed. The use of neural networks allows for the prediction of energy consumption in complex pro-
duction systems by considering an input vector of parameters without explicitly investigating their
relationships with the consumed energy. This is achieved through the formation of the network archi-
tecture and its training based on historical data.

In many practical forecasting tasks, time series are commonly used, which are characterized
by high levels of nonlinearity, nonstationarity, irregular trends, abrupt changes, and anomalous out-
liers. In such conditions, rigid statistical assumptions about the properties of time series often limit the
capabilities of classical forecasting methods. In the study [9], a neural network training method is pro-
posed to address the task of time series forecasting. The results of the simulation modeling confirmed
that the proposed neural network training method significantly improves the accuracy of time series
forecasting.

A new hybrid approach based on machine learning, combining multilayer perceptron (MLP),
support vector regression (SVR), and CatBoost, is proposed in the study [10] for power forecasting.
The authors analyzed the trends in electricity consumption from renewable and non-renewable energy
sources and combined them.

In the article [11], neural networks are used by the authors for forecasting and detecting ano-
malies in energy consumption indicators. For this purpose, adaptive and continuous training of the
neural network is proposed. The authors have demonstrated that the performance of neural networks
exceeds clustering algorithms.

The success of artificial neural networks in the discussed problem can be attributed to the non-
linear nature of the forecasted processes and the neural network's ability for self-learning and generali-
zation. It handles high levels of uncertainty, stochasticity, and chaos. Currently, there are numerous
successful examples of using neural networks in electricity consumption forecasting, both domestically
and internationally. In the majority of cases, the forecasting system is based on a multilayer perceptron
with all its variations, unified by a common architecture with feedforward information transmission.

An alternative to neural networks with direct information transfer in forecasting tasks can be re-
current neural networks that include both global and local (at the level of layers) feedback in their archi-
tecture and are trained using specialized procedures [12]. Thanks, first of all, to its universal approximat-
ing and extrapolating capabilities and the ability to learn in conditions of significant structural and para-
metric uncertainty of the characteristics of the forecasted processes. In most cases, recurrent neural net-
works from a computational point of view are much more efficient than networks with direct information
transfer [13]. To date, three types of recurrent neural networks have been most widely used in the tasks
of processing nonlinear time series: Williams-Zipser [14], Ellman [15], and Jordan networks. To solve
the problems of analyzing and predicting time series and detecting changes in their properties, these net-
works require significant modification, which concerns, first of all, the learning algorithms, since all the
specified neural networks are trained in batch mode and do not foresee the situation when the data of
time series observations are received on processing sequentially one after the other.

In general, electrical load is a stochastic process, with dominant causal factors being time of
day and weather conditions. The ongoing development of computer technologies enables the imple-
mentation of complex and branching neural networks that provide high forecasting accuracy for sto-
chastic processes. An analysis of numerous studies leads to the conclusion that there is no universal
method capable of solving the problem of forecasting characteristics of random processes of various
natures. However, established approaches, when applied to specific practical tasks, allow for the con-
struction of models that provide acceptable reliability and accuracy.
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Formulation of the study purpose

The purpose of this study is to enhance the operational efficiency of power supply companies
through the development of algorithmic and software solutions for short-term electricity consumption
forecasting based on recurrent neural networks. To achieve this, the article investigates multilayer neural
networks that can provide forecasts with minimal deviation from actual electricity consumption values.

Presenting main material

Within this research, it is necessary to construct a recurrent neural network. Based on this me-
chanism, it is possible to predict the values of variables that are important in the decision-making
process. The use of a neural network for time series forecasting involves forming a neural network
with a specific structure, adjusting its parameters based on the behavior of the studied system at
known time points, and predicting the future behavior of the system based on previous observations.
The choice of the neural network structure is determined by the specificity and complexity of the prob-
lem being addressed. To construct a neural network model capable of adequately and accurately solv-
ing the given task, it is necessary to describe the object that serves as the input signal to the neural
network. This can be the output values of variables or initial values of defined quantities. In our case,
the input signal will consist of data on electricity consumption from a previous analogous period.

Let the sequence of time series observations be given yg, y1,...,Y; for forecasting the next val-
ues of this series Vi1, Yi+2,---» Yiok With an absolute error smaller than a certain value € :

|yt+i_yt+i |<‘9’ i=LK. 1)

The time series of electricity consumption is characterized by chaotic dynamics. We assume
that all transient processes in the system have settled, and the time series reflects the trajectories in the
vicinity of a strange attractor. In multi-step forecasting, it should be taken into account that for a chao-
tic time series, the forecast can be performed properly up to a certain limit (forecast horizon). The
existence of the horizon is explained by the fact that for chaotic series, the data error, which was small
at the initial time point, grows in a geometric progression due to the divergence of trajectories that
were initially close. If the system'’s trajectory moves within the same region of the attractor associated
with that section, the series is considered to be normalized.

Recurrent Neural Networks (RNNs) are a class of artificial neural networks in which connec-
tions between nodes form a directed cycle. This creates an internal state within the network, allowing
it to exhibit dynamic behavior over time. Unlike feedforward neural networks, RNNs can utilize their
internal memory to process arbitrary input sequences.

As a test model, we choose the Elman network because it has the ability to learn and solve
numerous practical problems. The Elman network can also maintain a form of state, enabling it to
perform tasks such as sequence prediction that are beyond the capabilities of a standard feedforward
perceptron. The dynamics of the model can be formally described as follows:

p(t) = f (wyx(t) +wz p(t-1)), (@)

y(®) = f (w3 p(b)), 3)

where x(t) — the input signal vector with a dimension of m, p(t) — the output signal vector of the
hidden layer with a dimension of g, f(e) — the non-linear function that characterizes the hidden

layer.,w; — Matrix of synaptic weights connecting the hidden layer and the input. 1w, — Matrix of

synaptic weights connecting the hidden layer and the context, W; — matrix of synaptic weights con-
necting the output layer and the hidden layer, y(t) — output signal of the network.

The network has recurrent connections between hidden neurons and a context layer. These
context elements store the outputs of the hidden neurons at the previous time step, and then pass them
to the output layer. This allows the neurons to remember their previous actions. The hidden neurons
also transmit information to the output neurons, which shape the network's response to external stimu-
li. Since the nature of the feedback is solely associated with the hidden neurons, they can propagate
repeated cycles of information throughout the network over a large number of time steps, thus access-
ing an abstract representation of time. At time step t, the input neurons receive the first input of the
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sequence sequentially. Each input can be scalar or vector, depending on the nature of the task. The
context elements are initially set to 0.5. The input neurons and context activate the hidden neurons,
which in turn activate the output layer. The hidden neurons also send signals to the context. During the
next time step t + 1, the sequence is repeated. This time, the context contains the values of the hidden
layer at time t. These context blocks can provide memory to the network.

To train the network, we use the backpropagation algorithm. First of all, the recurrent connec-
tions are fixed at 1.0 and are not subject to adjustment.

Training with the backpropagation method involves two passes through all the layers of the
network: forward and backward. During the forward pass, the input vector (image) is presented to the
sensory nodes of the network, and it propagates through the network layer by layer. As a result, a set
of output signals is generated, which represents the network's actual response to the given input image.
During the forward pass, all synaptic weights of the network remain fixed.

During the backward pass, all synaptic weights are adjusted according to the error correction
rule. Specifically, the actual network output is subtracted from the desired response, resulting in an
error signal. This error signal is then propagated through the network in the opposite direction of the
synaptic connections. Hence the name "backpropagation algorithm. The synaptic weights are adjusted
to maximize the approximation of the network's output signal to the desired output. The learning
process implemented by this algorithm is known as backpropagation learning.

Let the training sample be represented as: (u(k),d(k)), k=LK, xe d(k) — the expected re-
sult of the network. After a direct move, we calculate the network error for the current vector:

E_ ((L) )2 @)

where y(") network output, d ; —expected result.

The task boils down to minimizing the error function. To achieve this, we use the gradient
descent method:

wid) t+1) =i © - ol 5)

) = 5(')y(' D, (|=o,|_, i=ON, j=0,M), (6)

where ¥ — learning rate 5i(')—the error of the i-th neuron in the | -th layer. For the last layer 5i(') it

will take the form:
A= 1RO H ) g

where f '(si(")) — the derivative of the activation function.
. o 1-e7°

The neuron activation function is selected as: f (s)=tanh(s) = 5 - For all other layers, the

l+e

neuron's error function will look like this:
I+1
50 _ ( (l)) Z 5D WD ®)

The training procedure needs to be repeated multlple times. Sometimes even going through all
the vectors in the training set may not have sufficient effect on weight changes. Going through all the
vectors in the training set with weight updates is called an epoch of training. The number of epochs
can reach hundreds of thousands. The operation of the network is divided into two stages:

1) the training stage;

2) the functioning stage in real situations.

The ability of the network to function based on data it hasn't been trained on is called generali-
zation ability. The method of testing the generalization ability is referred to as a learning strategy.

For the EIman network, we will use the following strategy. The entire dataset is divided into subsets:
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1) a training set (70 %);

2) a testing set (30 %).

The distribution of vectors across the datasets is random. After each epoch, we record the
weights and pass through the entire training set first and then the testing set. For each dataset, we cal-
culate the average error across all vectors (training error and generalization error, respectively). As the
number of epochs increases, the errors should converge. The network is considered trained if the er-
rors remain close in value for an extended period. This provides a criterion for stopping the training.
The value to which the errors converge is referred to as the capacity of the network. It characterizes
the network'’s ability to work with the given dataset. However, if the errors reach asymptotic curves
and hardly change over a large number of epochs, it indicates that the network’s capacity is insufficient
for working with the data.

Let's construct an algorithm for solving the prediction problem using the Elman network. We
will choose the network architecture as follows: the number of neurons in the output layer will be one,
and for the input and hidden layers, we will experimentally select the number of neurons, evaluating
the prediction error for each variant using the formula:

n 2
MSE = ZI:[LOI'J , ©)

= Yi
i=1
where MSE — the value of the relative root mean square error, y; — the output of the network at the

i-th step, d; — preferred network feedback.

Then the algorithm can be represented in the following steps:
1. Preparing the data for feeding into the neural network. Since the dataset needs to be norma-
lized, we can do it using the following formula:

o)
2| Xj ——| minX—maxx
% = 2\ xeX xeX

1 ]
(min X— maxxj
xeX xeX

(10)

where X; — normalized value of the input signal X;.

2. Specify the number of neurons in the input and hidden layers and create the network.

3. Train the network using the following steps.

3.1 Prepare the training dataset. In our case, it consists of 20,000 values. Randomly divide
them into vectors for training and testing.

3.2 Feed the training dataset vector into the network input.

3.3 Perform a forward pass using the backpropagation algorithm.

3.4 Evaluate the error of the obtained results using formula (4).

3.5 Perform a backward pass using the backpropagation algorithm.

3.6 Fix the network weights.

3.7 Pass the entire training dataset through the network and calculate the training error.

3.8 Pass the entire testing dataset through the network and calculate the generalization error.

3.9 Repeat steps 3.1—3.8 for a sufficient number of epochs until the training and generaliza-
tion errors converge with the desired accuracy.

4. After completing the training phase, we can test the network for prediction. We choose the
number of steps ahead we want to forecast: one, five, or ten. We input the dataset for processing into
the network. Then, using a forward pass of the network, we obtain the forecasted values.

5. We evaluate the error of the obtained result using formula (9).

Based on the constructed algorithm, the design of a software system for electricity consump-
tion forecasting will be conducted. During the system design, it is necessary to clearly define all usage
scenarios, all possible use cases, and develop the system architecture, among other things. Therefore, a
use case diagram was created, which is a graphical representation of various application scenarios of
the system by the user (Fig. 1).
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Fig. 1. Chart Use Case of forecasting electricity use

The developed program consists of three main parts: "Interface,” "Calculation Block," and
"Information Block." They are further divided into modules.

The "Interface™ block is divided into 6 modules, each performing its specific function. The "Cal-
culation Block™ consists of 5 modules, including "Elman Network Training," where the training of the
neural network takes place, and "Error Calculation,” where the relative error is computed. The next mod-
ule is "Forecasting for 1, 5, and 10 hours," which performs forecasting using the trained neural network.
The final module is "Graph Plotting," where graphs are constructed based on the forecasting results.

The program was tested on real data of hourly electricity consumption in Ukraine. Since the
data used corresponds to a specific time of observation, it can be considered to reflect the temperature
regime characteristic of a particular forecasting moment (excluding anomalous phenomena). The train-
ing dataset size for each series is 20,000 values. The network'’s learning rate is 0.01. When construct-
ing the network, there are 4 input neurons, 8 hidden neurons, and one output neuron. The training
results of the network are presented in Fig. 2.
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Fig. 2. Results of neural network training
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The next stage is forecasting. The forecasting results for one step ahead are shown in Fig. 3.
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Fig. 3. Results of forecasting electricity consumption are one step ahead

The execution time of training and forecasting using this program is 30 seconds. This forecast-
ing time, even with training, is acceptable as it constitutes 1/120th of the minimum time interval for
forecasting.

The relative training error of the neural network is 0.003654, while the forecasting error on
real data is 0.003015. Thus, the forecasting error does not exceed the training error.

Conclusions

As a result of the conducted work, algorithmic and software solutions for time series forecast-
ing of electricity consumption using a recurrent neural network have been developed. The network has
been constructed, and optimal parameters have been chosen for its operation. UML diagrams have
been designed to clearly illustrate how the system should work and the requirements it must meet.
Scenarios for the system's operation have been developed and implemented in the software.

The findings of this research contribute to the advancement of energy forecasting and provide
practical guidance for implementing RNN models in real-world energy management scenarios. The
interpretability analysis enhances our understanding of the factors influencing electricity consumption
and enables better decision-making in energy planning and resource allocation.
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