50 Maremaruune mozemroBanus Ne 1(50) 2024

DOI: 10.31319/2519-8106.1(50)2024.304856
YK 004.94

Peremitko Mykhailo, PhD student, Department of Mathematical Modeling and System Analysis
e-mail: mikhailperemitko@gmail.com

Mepemireko M.B., 3100yBau Tperboro (1okTopa (inocodii) piBHs BUIIOI OCBiTH, Kadeapa
MaTeMaTHYHOT'O MOJEJIIOBaHHS T4 CHCTEMHOI'O aHalli3y

Nadryhailo Tetiana, Candidate of Technical Sciences, Associate Professor of the Department of
Mathematical Modeling and System Analysis

Hanpuraiino T.K., kanauaaT TEXHIYHUX HAYK, TONEHT Kadeapu MaTeMaTHYHOTO MOJICTIOBAaHHS Ta
CHUCTEMHOTO aHalli3y

ORCID: 0000-0003-1239-5946

e-mail: ntatiana62@gmail.com

JIHIMpOBCHKUI Nep>kaBHUM TeXHIYHUN yHiBepcuTeT, M. Kam’stHCbKe
Dniprovsky State Technical University, Kamianske

COMMUNICATION BETWEEN REACT NATIVE MOBILE APPLICATIONS AND
BLUETOOTH LOW ENERGY DEVICES

KOMYHIKALIA MOBUUVIBHUX TOJATKIB HA REACT NATIVE TA
BLUETOOTH LOW ENERGY IIPUCTPOIB

Today, smartphones are essential for communication, info access, and work flexibility. They
integrate with various devices like fitness trackers, enabling health monitoring and home automation.
This sync, often via Bluetooth Low Energy (BLE) tech, conserves energy and expands smartphone
functions. Meanwhile, React Native is an optimal choice for cross-platform software development.
These technologies facilitate efficient wireless interaction between smartphones and other smart de-
vices. This research is focused on the overview of these technologies and dedicated React Native tools
for BLE interaction handling.

Keywords: smartphone, mobile application, smart device, Bluetooth Low Energy, React Native.

Y cynacnomy ceimi cmapmaponu gidizparoms axicaugy poib, Cmasuii He6l0 EMHUM eleMEeHMOM
NOBCAKOCHHO20 Jicumms. BOHU € OCHOBHUM 3ac0O0M CRIIKY8AHHSA, 00CMYNy 00 iHpopmayii, po3eae, a
MAKoC 300e3neUyIonb MONCIUBOCHI /i1 POOOMU MA HABYAHHS 8 OYOb-IKOMY MICYi i 8 6Y0b-AKULL YdC.

Okpim cmapm@ponie, cycnitbcmeo éce wacmiuie KOpUCmyemvcsi 000AmMKOSUMU NPUCTPOSMU, MA-
KuMU 5K QhimHec-mpexepu, cMapm-200UHHUKY, 8al, MeOuyHi npucmpoi ma inwi eadscemu Inmepuemy
peuetl (IoT). Oxpim HezanencHoi pobomu OKpemo yi RpUCmpoi 83aEMo0iromby i 3i cMapmM@OHAMU)y Momy
yucni. La inmezpayis 00360151€ KOPUCTY8AUAM KOHMPOTIIOBAMU CBOE 300p08'ss ma (i3uuy aKmueHicmy,
OMPUMYBAMU BANCTIUGE CHOBIUJEHHS, Kepysamu NOOYMOBOI0 TEXHIKOIO ma a6MOMAmu3yeamu pisui acne-
KMU NOBCAKOEHHO20 JHCUMMS uepe3 63acMo0iio 3 pisnumu npucmposmu. Hanpuxnao, cmapmeorn moonce
CUHXPOHI3Y8AMUCH 3 (DimHec-mpeKepom Oiisl GIOCMENCeHHsl KPOKI8 ma cepyesozo pummy, abo 3i 0omaut-
HIM NPUCIPOEM Ol KEPYBAHHS OCBIICHHAM, ONANEHHAM 4l cucmemoio besnexku. Taxa 63aemo0is po3uiu-
PIOE MOACTIUBOCINE CMAPTNEDOHIE § CNPUSE YIMBOPEHHIO €KOCUCIEMU CUHXPOHI308aHUX NPUCTIPOTS.

THooibna cunxponizayis cmapmeonie ma HaseOeHuUx NPUCMPOis 6 NePesaXiCHitl OiIbWOCMI 8U-
naokis docsieaemvcs 3a 00nomoeorw mexuonozii BLE (Bluetooth Low Energy), 6e30pomosoi mexnono-
2ii 36'A3Ky, W0 po3pobaeHa Ons eHepeoeheKmuH020 0OMIHY OAHUMU MIdHC NPUCTPOAMU HA KOPOMKIll
giocmani. L{a mexnonocisi € ONMUMANbLHOI 3 MOUKU 30PY CHOMCUBAHHSA eHepzii ma 003605€ nepeoa-
samu Oawui Ha eiocmarnb 00 10 mempis 3 Hegeruxow wisuoxkicmio. Onmumizogana poboma 3 mMouKu
CHOJMCUBAHHS eHepell € KIOHU08UM (PAKmopom y ROOIOHUX [HmMe2payisax uepe3 0OMediceHy EMHICMb
aKymyasmopis, 80y008auux y po3ymMHi npucmpoi.

YV ceor0 uepey, React Native ¢ payionanvhum 6ub6opom 8 AKOCMI MexHon02ii 0usi po3pooKu
npocpamMuo2o 3abe3neuents Oas cmapmeonis 3 pisnumu onepayiinumu cucmemamu. Kpocniamgpop-

mailto:mikhailperemitko@gmail.com
mailto:mikhailperemitko@gmail.com
mailto:ntatiana62@gmail.com

Poznin 1. MatemaTr4He MOJIENIIOBaHHS B IIPUPOIHUYNX HayKax Ta iHpopMamiiHi TeXHOIOTi{ 51

MHULL NIOXi0, WO BUKOPUCTOBYEMBCA Y YbOMY THCIPYMEHMI 003605€ ONMUMIZY8amMu po3pooKy 3a
PAXYHOK MONCIUBOCTE BUKOPUCHOBYBAMU OOHY Peani3ayito Ha KilbKOX NIAm@opmax.
3a donomo2oto mexHonoeil, 3a3HAUEHUX BUULE, MONCTUBO ONMUMATLHUM ULIAXOM CIGOPUIMU NPO-
epamue 3abesnevenist 0t 6e30pomoeol 83aEMO0IL MIdC CMAPMOOHOM Ma IHUUMU POYMHUMU RPUCHPOSIMU.
Knrouosi cnosa: cmapmagon, mobinvrutl 0o0amox, posymuuti npucmpii, Bluetooth Low Energy,
React Native.

Problem’s Formulation

Software development for mobile devices does not lose its relevance, but only gains momen-
tum in its development. The toolkit is becoming more extensive, and an increasing number of technol-
ogies for creating such software are emerging. Among the available solutions, React Native occupies a
significant position. It is an open platform for mobile application development that allows the creation
of cross-platform applications, i.e., those that are compatible with multiple operating systems. Re-
searching and using such tools is important because of the efficiency they provide. In particular, the
primary advantage is that the same code can be utilized to develop applications for both the Android
and 10S platforms, with the objective of incorporating as much of the common code as possible. Con-
sequently, the support and maintenance of the software are also simplified.

As the prevalence of Internet of Things (IoT) devices in everyday life continues to grow, there is
a pressing need to develop software that ensures seamless and efficient wireless interaction between
these devices and mobile applications on smartphones. In this regard, it is crucial to conduct a compre-
hensive examination of the available solutions and tools in the context of React Native technology and
Bluetooth Low Energy devices, their interaction, and the potential for communication between them.

Thus, it is important to study the available solutions and tools in terms of React Native tech-
nology and devices with Bluetooth Low Energy support, their interaction and the possibility of
communication between them.

Analysis of recent research and publications

The problems of using Bluetooth Low Energy and the implementation of interaction between
devices are considered in the materials of A. Pakula and E. Palamarchuk [1], the review of the tech-
nology is made from the point of view of the Android operating system and the available support of
this system for this type of wireless communication.

In the article by A. Ozerchuk [2], the Bluetooth Low Energy technology, its main components,
energy efficiency issues, and the method of communication between devices that support this technol-
ogy are considered in more detail.

Nevertheless, the study of such integration from the perspective of different mobile platforms
and React Native technology is not yet sufficiently covered. There is a need for a more in-depth analy-
sis of how React Native interacts with Bluetooth functionality on iOS and Android platforms, particu-
larly in the use of their Bluetooth Low Energy (BLE) Application Programming Interfaces (APIs). In
addition, it is important to identify which BLE features can be effectively used with React Native, as
well as the challenges that arise when developing cross-platform applications using this technology.

Formulation of the study purpose

The objective of this research is to examine the efficacy of software tools for establishing a wireless

connection between React Native mobile applications and Bluetooth Low Energy-enabled smart devices.
Presenting main material

It is crucial to begin by defining the primary objective of utilizing React Native as a mobile develop-
ment tool instead of traditional methods, such as those employed in native mobile application development.

Native mobile application development is a conventional approach to creating applications
that employs the programming language and software architecture of the platform, or operating sys-
tem, to develop a code base that is then compiled into native applications compatible with a single
platform. Although this methodology has been employed since the advent of smartphones, the tools
and technologies have evolved over time. For Android, the principal programming language was pre-
viously Java or C++, but since 2017, Android has also supported the comparatively more recent and
more flexible Kotlin language. In turn, Objective-C was the sole language for iOS development until
2014, when Apple introduced its Swift programming language for developers [3].

52 Maremaruune mozemroBanus Ne 1(50) 2024

Developing native apps not only forces developers to learn and use separate programming
languages for each operating system, but also encourages them to use the recommended software ar-
chitecture of each platform. For iOS, the recommended architecture is Model-View-Controller
(MVC), while Android applications typically use the Model-View-ViewModel (MVVM) architecture.
As a result, the codebases of native applications have very little in common with each other. Conse-
quently, knowledge of one codebase provides only limited insight into the other.

The strongest argument for the power of native mobile app development is user experience
and speed reaction. Because developers write native code, they can use the platform's APIs (applica-
tion programming interfaces) and support libraries, and create user interface mockups using specific
and optimized interface components provided by the platform. As a result, with the help of these tech-
nologies it is possible to achieve the best results in terms of optimization, speed and user experience.

The main problem in the development of native applications is, of course, separate code bases.
Developing the same application for multiple platforms requires knowledge of platform-specific devel-
opment methods and technologies. Developing and maintaining native mobile apps for multiple plat-
forms is comparable to running multiple separate software projects simultaneously, often requiring
more developers and other project personnel than a single app project. As the number of supported plat-
forms increases, the cost and effort of development and subsequent support and maintenance also rise.

To solve this problem, cross-platform development tools were created. Cross-platform frameworks
allow developers to write source code in a common programming language, which is then compiled into
native binaries for each platform using a cross-compiler. The main job of the cross-compiler is to specify
which native Ul components and platform features to use. An app developed using a cross-platform
framework can have a very close user experience to a full native mobile app, but there are exceptions.

The main advantages of cross-platform frameworks are performance and user experience. The
user interface is displayed on every device using native components, so the app will look native if the de-
velopers take into account the design features of the specific platform. While no cross-platform frame-
work can fully compete with the speed of full native apps, tests and research show that such frameworks
are optimized enough to match the level of apps built with native tools in the vast majority of use cases.

One of these frameworks is React Native, which has proven itself as one of the most stable
and optimal tools for creating cross-platform software for mobile devices.

React Native is an open source software created by Facebook that allows developers to create
mobile applications using JavaScript and React. The main idea behind React Native is to allow devel-
opers to create mobile applications using the same principles as for web development with React, but
with the ability to deploy on i0OS and Android platforms [3].

One of the main advantages is also that React Native takes a declarative approach to user in-
terface development. Developers describe what the interface should look like in different states, and
React Native automatically manages to update the display when the app state changes. This simplifies
software development and maintenance.

Additionally, React Native has a large developer community that is constantly growing. This
means that developers can easily find solutions to their problems, consult and share experiences with
other community members. In turn, the presence of such a large and active community contributes to
the existence and further development of a wide range of third-party libraries and modules available
for React Native. This allows developers to easily and quickly integrate various features and functio-
nality into their applications without having to build everything from scratch.

In order to understand how the framework can interact with Bluetooth Low Energy technology
and communicate with other devices wirelessly, it is necessary to have an idea about the general
framework architecture.

The React Native architecture includes several core components, including a JavaScript virtual
machine, a React Native bridge, and native modules. The application code runs on the JS virtual ma-
chine along with any third-party libraries used. Calls from native modules are routed through the React
Native bridge to native APIs and third-party libraries, and results are passed back through the bridge
as needed. It allows using JavaScript to develop applications while using native user interface compo-
nents and platform capabilities [4].

Poznin 1. MatemaTr4He MOJIENIIOBaHHS B IIPUPOIHUYNX HayKax Ta iHpopMamiiHi TeXHOIOTi{ 53

App Platform OS Next, more details
about each of the compo-

Javascript : o | e pents, Fheir connectiop and
— Widgets interaction are shown in the
,: | Events diagram (Fig. 1).
: The implementation
N Eﬂ of React Native applications is
& . Lo l Camera based on the use of a built-in
; JavaScript virtual machine (JS
e <—i—=| Audio l Sensors VM), which executes the ap-
Tree . Bluetooth l etc. plication's JavaScript code.
' The JS VM is responsible for
|5 Thread Native Thread executing application logic,

rendering components, and

managing application state.

. Fig. 1. A diagram of the main components of the React Native React Native uses JavaScript-

architecture Core for iOS and JavaScript-
Core or V8 for Android.

The bridge is one of the key components of the React Native architecture. It provides interac-
tion between the JavaScript code of the application and the native components of the platform. The
bridge is responsible for forwarding calls and events between JavaScript and native code.

In turn, native modules are parts of functionality implemented in the programming languages
of a specific platform (Objective-C for i0S, Java or Kotlin for Android). React Native provides a way
to call these native modules from JavaScript code, allowing you to use platform features such as
camera, geolocation, Bluetooth, and more.

It is important to note that at the time of writing, the architecture is undergoing changes as the
new modified architecture is gradually being implemented in new versions of the framework. Howev-
er, it has not yet acquired the status of the main and stable architecture. Consequently, the vast majori-
ty of applications that have been created and are being created continue to work with the support of the
original architecture.

Thus, to access the Bluetooth Low Energy functionality, appropriate native modules are used
that allow making calls to system functions responsible for establishing a wireless connection and data
transfer on each of the mobile operating systems.

Thanks to a large and active community of developers, several library integrations of native
modules have been created to date, allowing you to use the Bluetooth Low Energy software interface
of each of the Android and iOS mobile operating systems. Another great advantage is that these libra-
ries are open source. Open source libraries are software components or modules that are distributed
with open source code and are available for use, modification and further distribution under the terms
of a license that allows free use and modification. The implementation of functionality in such libra-
ries is completely transparent and understandable. In the event that the necessary functions are not
available, it is always possible to add the necessary parts yourself if they are verified by the developers
responsible for this library and its support.

Before moving on to specific examples of such modules for working with Bluetooth Low
Energy, it is worth providing general information about the wireless technology itself and its features.

Bluetooth Low Energy (BLE) is a wireless technology that was developed by the Bluetooth
Special Interest Group (SIG) for short-range communication over short distances. Unlike previous
versions of Bluetooth, BLE was specifically designed as a low-power technology that can be used in-
dependently. Although it uses the Bluetooth brand and uses many elements of its parent technology,
Bluetooth Low Energy should be seen as a distinct technology with different specifics and goals.

The Bluetooth Low Energy (BLE) architecture is based on the concept of a client-server mod-
el using the Generic Attribute Profile (GATT).

Among the main components of the technology, the following can be distinguished (Fig. 2).

54

Matematuune moxentoBarHs Ne 1(50) 2024

Host

Generic Access Profile

(GAP)

Generic Attribute
Profile (GATT)

Security Manager
(SM)

Attribute
Protocol (ATT)

Logical Link Control and
Adaptation Protocol (L2CAP)

Controller

Host-Controller Interface (HCI)

Link Layer (LL)

Physical Layer

(PHY)

Fig. 2. Diagram of the main components of the

Bluetooth Low Energy architecture

Profile

Service Service
Characteristic Characteristic
bl 3 i 3
i Descriptor i Descriptor
bl 3 i 3
i Descriptor i Descriptor
Characteristic

P,

i Descriptor
Characteristic

Fig. 3. Diagram of the main components of the

GATT profile

Physical Layer (PHY):The BLE
physical layer defines the characteristics of
the radio frequency communication, such as
frequency, modulation, and signal strength.

Link Layer (LL):The communication
layer is responsible for connection man-
agement, data transfer and error control.

Host Controller Interface (HCI):An
interface that provides communication be-
tween the Bluetooth controller and higher
levels of the protocol stack.

Logical Link Control and Adaptation
Protocol (L2ZCAP): A protocol that provides
multiplexing and management of data flows
between different applications [5].

Interaction between smartphones and
other devices takes place according to the
GATT protocol. GATT (Generic AT Tribute
Profile) is an abbreviation that stands for
General Attribute Profile, and defines the
way of data exchange between two Blu-
etooth Low Energy devices using concepts
called services and characteristics (Fig. 3).
It uses a common data transfer protocol
called the Attribute Protocol (ATT), which
is used to store services, characteristics and
related data in a simple table using 16-bit
identifiers for each entry in the table [5].

GATT is used after a persistent
connection has been established between
two devices, which means you've already
gone through the GAP-driven advertise-
ment process.

It is important to note that in the
GAT protocol, connections are exclusive.
This implies that a BLE peripheral can only
be connected to a single central device
(e.g., mobile phone) at a time. Once a peri-
pheral is connected to a central device, it
ceases to broadcast its presence and other
devices are unable to detect it or establish a
connection until the existing connection is
terminated.

Establishing a connection is the on-
ly way to allow bidirectional communica-

tion, where a central device can send meaningful data to a peripheral device and vice versa.

The following procedure is usually used for interaction between a smartphone and a smart de-
vice via BLE.
Advertising: The smart device sends advertising packets to notify the smartphone of its presence.
Connection Establishment: The smartphone sends a connection request to the smart device.
Interaction through GATT: After a successful connection, the smartphone and the smart device

communicate using GATT. A smartphone can read or write the characteristics (attributes) of a smart

device, for example, receive data from sensors or control various functions.

Poznin 1. MatemaTr4He MOJIENIIOBaHHS B IIPUPOIHUYNX HayKax Ta iHpopMamiiHi TeXHOIOTi{ 55

Among the available libraries compatible with React Native there are 2 variants: react-native-
ble-manager and react-native-ble-plx. Both libraries focus on providing access to Bluetooth Low
Energy interoperability system functions through the integration of appropriate native modules. Each
of these libraries has been maintained and improved for the last 8 years, but over the last year, the fre-
quency of use of react-native-ble-manager has increased significantly compared to the competing
module (Fig. 4). It is important to choose such a library, which is used by a larger number of people,
accordingly, support and identification of potential problems in the work will also be more active. But
in this case, it is worth noting that both solutions are proven years of use by many developers, regard-
less of the current popularity of this or that library.

Downloads inpast 1 Year v

@ react-native-ble-manager () react-native-ble-plx

70,000

60,000

50,000

40,000

30,000

20,000

10,000

Jul 2023 Oct 2023 Jan 2024 Apr 2024

Fig. 4. Graph of the number of downloads of the react-native-ble-manager and react-native-
ble-plx libraries over the last year

The react-native-ble-plx library supports everything you might expect: scanning, connecting,
communication, running in the background, filtering devices by name and ID, checking package inte-
grity for multi-device connections, discovering services and features. This solution provides a wide
range of functions for a finer work with Bluetooth Low Energy. It is also worth noting the good do-
cumentation of all available functions and examples of their use.

The main elements of the react-native-ble-plx software interface include the following functions:

1. Track the current state of the Bluetooth connection using bleManager.state() and onStateChange().

. Scan surrounding devices using bleManager.startDeviceScan() and bleManager.stopDeviceScan().

. Establishing communication with surrounding devices using bleManager.connectToDevice() and

device.cancelConnection().

4. Obtaining information from the device about available services and characteristics of its profile
using bleManager.discoverAllServicesAndCharacteristicsForDevice() and bleManag-
er.servicesForDevice().

5. Read and write data by modifying characteristics with device.readCharacteristicForService() and
device.writeCharacteristicWithResponseForService().

6. Receiving notification of characteristic change using device.monitorCharacteristicForService().

In turn, the react-native-ble-manager library also provides all the necessary functionality for
working with Bluetooth Low Energy devices. It is not targeted at more complex usage scenarios such
as multi-device connections, guaranteed transactions, or data packet processing. But the functionality
of this library is well suited to most typical application needs. There is also built-in support for work-
ing with beacons on both iOS and Android.

The main elements of the react-native-ble-manager software interface include the following functions:
1. Scan surrounding devices using BleManager.scan(), BleManager.stopScan(), and

BleManager.compassionScan().

2. Establishing communication with surrounding devices using BleManager.connect() and

BleManager.disconnect().

W N

56 Maremaruune mozemroBanus Ne 1(50) 2024

3. Track the current Bluetooth connection status with
BleManager.enableBluetooth()and BleManager.checkState().

4. Read and write data by modifying characteristics with BleManager.read(), BleManager.write(), and
BleManager.writeWithoutResponse().

5. Receive notifications about changes in characteristics using
BleManager.startNotification() and BleManager.stopNotification().

Given the above basic functionality of both libraries, it can be assumed that their software in-
terfaces are very similar, therefore, in the case of the need to replace one with another during devel-
opment, the migration should be quite trivial. In summary, both tools are up-to-date, actively sup-
ported by the community, and provide all the necessary functionality to work with Bluetooth Low
Energy in the React Native ecosystem. The choice of one or another library may be due to ease of use
or the need for certain exclusive functionality.

Conclusions

Achieving communication between mobile applications built with React Native and smart de-
vices with Bluetooth Low Energy support is possible using two different open source libraries: react-
native-ble-plx and react-native-ble-manager. Together with the React Native framework, these libra-
ries provide opportunities to optimize software development due to simultaneous compatibility with
both iOS and Android mobile operating systems. This toolkit is worthy of attention and further re-
search to implement more efficient approaches in mobile software development.

References

[1] Pakula A.A., Palamarchuk Ye.A. (2022) Vykorystannya tekhnolohiyi Bluetooth Low Energy dlya
rozumnykh prystroyiv v mobil'niy rozrobtsi, Materialy XV konferentsiyi «Informatsiyni
tekhnolohiyi i avtomatyzatsiya - 2022», Odesa, 20-21 zhovtnya 2022 r., 166-168.

[2] Ozerchuk .M. (2023) Bluetooth Low Energy, yak osnova peredachi danykh pry nadmalomu
enerhosporozhivanni, Naukovyy zhurnal "Kompyuterno-intehrovani tekhnolohiyi: osvita, nauka,
vyrobnytstvo" vypusk Ne 51, Luts'k, 174-180.

[3] Bezverkhiy.O, Kutsenko O. (2021) Rozrobka krosplatformennykh dodatkiv, Materialy VII ISPC
Transfer of Innovative Technologies, Kyiv, 102-105.

[4] Domarats'’kyy 1.V., Bahnyuk N.V., Bortnyk K.Ya., Tyshchuk LV. (2023) Zasoby rozrobky
krosplatformennoho mobil'noho dodatku, Naukovyy zhurnal "Kompyuterno-intehrovani
tekhnolohiyi: osvita, nauka, vyrobnytstvo" vypusk Ne 53, Luts'k, 111-116.

[5] Carles Gomez, Joaquim Oller, Josep Paradells (2012) Overview and evaluation of Bluetooth Low
Energy, An Emerging Low-Power Wireless Technology, Sensors, 12, 11734-11753.

Crnmcox BUKOPHCTAHOI JiiTepaTypu

1. IMTakyna A.A., [lanamapuyk €.A Bukopuctanns texnonorii Bluetooth Low Energy nns pozymuux
MPHUCTPOiB B MOOLIBHIN po3pobdui // Marepianu XV koHdpepenuii «[HpopmariiiHi TexHonorii i aBTo-
Matu3zanis - 2022» , Oneca, 20-21 sxoBTHs 2022 p. — 2022, ¢.166-168.

2. Ozepuyk .M. Bluetooth Low Energy, six ocHoBa mepenadi AaHUX MPHU HAAMAJIOMY €HEPrOCHOXKH-
BaHHi // HaykoBuii sxypHan "KoMi 1oTepHO-iHTErpoBaHi TEXHOJOr1l: OCBiTa, HayKa, BUPOOHHITBO"
Bunyck Ne 51, JIyupk, 2023, c.174-180.

3. besBepxuit.O, Kynenko O. Pozpobka kpocmnatdopmennux noxatkiB // Marepianu VII ISPC
Transfer of Innovative Technologies 2021, Kuig, ¢.102-105.

4. Nomapanpkwuii 1.B., bararok H.B., boptauk K. 4., Tuniyk 1.B., 3acobu po3pobku kpocruiatdopmen-
HOro MoOinbHOrO nomatky // HaykoBwii xypHan "Komm’ioTepHO-iHTETpOBaHI TEXHONIOTIi: OCBiTa,
Hayka, BUpoOHHUTBO" BUIyck Ne 53, JIyupk, 2023, c.111-116.

5. Carles Gomez, Joaquim Oller, Josep Paradells Overview and evaluation of Bluetooth Low Energy:
An Emerging Low-Power Wireless Technology // Sensors, 12, 2012, ¢.11734-11753.

Haoitiuna oo peoxonezii 08.04.2024

	References
	[1] Pakula A.A., Palamarchuk Ye.A. (2022) Vykorystannya tekhnolohiyi Bluetooth Low Energy dlya rozumnykh prystroyiv v mobil'niy rozrobtsi, Materialy XV konferentsiyi «Informatsiyni tekhnolohiyi i avtomatyzatsiya - 2022», Odesa, 20-21 zhovtnya 2022 r., 166-168.
	[2] Ozerchuk I.M. (2023) Bluetooth Low Energy, yak osnova peredachi danykh pry nadmalomu enerhosporozhivanni, Naukovyy zhurnal "Kompyuterno-intehrovani tekhnolohiyi: osvita, nauka, vyrobnytstvo" vypusk № 51, Luts'k, 174-180.
	[3] Bezverkhiy.O, Kutsenko O. (2021) Rozrobka krosplatformennykh dodatkiv, Materialy VII ISPC Transfer of Innovative Technologies, Kyiv, 102-105.
	[4] Domarats'kyy I.V., Bahnyuk N.V., Bortnyk K.Ya., Tyshchuk I.V. (2023) Zasoby rozrobky krosplatformennoho mobil'noho dodatku, Naukovyy zhurnal "Kompyuterno-intehrovani tekhnolohiyi: osvita, nauka, vyrobnytstvo" vypusk № 53, Luts'k, 111-116.
	[5] Carles Gomez, Joaquim Oller, Josep Paradells (2012) Overview and evaluation of Bluetooth Low Energy, An Emerging Low-Power Wireless Technology, Sensors, 12, 11734-11753.
	1. Пакула А.А., Паламарчук Є.А Використання технології Bluetooth Low Energy для розумних пристроїв в мобільній розробці // Матеріали XV конференції «Інформаційні технології і автоматизація - 2022» , Одеса, 20-21 жовтня 2022 р. – 2022, с.166-168.
	2. Озерчук І.М. Bluetooth Low Energy, як основа передачі даних при надмалому енергоспоживанні // Науковий журнал "Комп’ютерно-інтегровані технології: освіта, наука, виробництво" випуск № 51, Луцьк, 2023, c.174-180.
	3. Безверхий.О, Куценко О. Розробка кросплатформенних додатків // Матеріали VII ISPC Transfer of Innovative Technologies 2021, Київ, с.102-105.
	4. Домарацький І.В., Багнюк Н.В., Бортник К.Я., Тищук І.В., Засоби розробки кросплатформенного мобільного додатку // Науковий журнал "Комп’ютерно-інтегровані технології: освіта, наука, виробництво" випуск № 53, Луцьк, 2023, с.111-116.
	5. Carles Gomez, Joaquim Oller, Josep Paradells Overview and evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology // Sensors, 12, 2012, с.11734-11753.

