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RESEARCH OF THE BALLISTIC FLIGHT TRAJECTORY OF A SOLID BODY OF
SPHERICAL AND CYLINDRICAL FORM TAKING AIR RESISTANCE INTO ACCOUNT

AOCIIKEHHA BAJIICTPI‘IHQi TPAEKTOPII IIOJIBOTY TBEPJIOTOTLIA
COEPUYHOI TA HWITHAPUYHOI ®OPMMU 3 YPAXYBAHHSAM OIIOPY IHOBITPA

The article presents the results of modeling and research of ballistic flight trajectories of spher-
ical and cylindrical solid bodies taking into account air resistance based on linear and quadratic de-
pendence. Ballistic flight trajectories were calculated for different values of the initial speed and throwing
angles, and a safety paraboloid was constructed. Based on the results of the study, it was established that
the main parameters affecting the flight range are the value of the initial flight speed of the solid body and
the value of the throwing angle. It is also determined that for each case of a flight range shorter than the
maximum achievable, there are two flight trajectories with different values of the throw angle.

Keywords: mathematical modeling of flight, ballistic trajectory, Stokes drag, Newton drag.

AxmyaneHicms O0anoi cmammi 00yMO8IeHA HeOOXIOHICMI0 YOOCKOHANEHH MAMeMamuiyHux
Modenell Nobomy meepoux minl cihepuyHol i yuniHOpuuHOi popmu manoodarbuioco po36umKy mMemooie
00CHI0IHCEHHS IX OANICMUYHUX MPAEKMODIT.

Memoro cmammi € nobyoosa mooeni norbomy meepoo2o mina cghepuuroi ma YUHOpUYHoOI
dopmu y npocmopi 3 ypaxy8aHHam pi3HUX 8aApPiaHMie MOOeN08aANHA CUNU 10D08020 ONOPY NOGIMPSL.

IIposedeno docniodcenns 6ANICMUYHUX MPAEKMOPILL NOTbOMY MEepA020 Mild 3 MOOeN08AH-
HAM 10606020 ONOPY NOGIMps JMIHIUHOI 3aNeHCHICIO npu Maaux weuokocmsx (onip Cmoxca) ma
K8AOpamuyHow — npu eauKux weuoxocmsx (onip Hetomona). Mamemamuuna modens 3adavi nooy-
008aHa Ha 0CHOBI Opyeoco 3akoHy Hviomona ma npedcmasiena y sueisioi ougepenyiaibHux pieHsHb
PpyXy mina 6 npoexyisax naocikoopounam. [106y006a po3g’a3ky 0as 6Unaoxy KeaopamudHoi 3anedic-
HOCmI cuiu 10606020 ONOpPY NOBIMPs MAE 0COONUBICMb BPAXYBAHHS HANPAMKY NOTbomy miid. [[ns
Gaszu niovomy mina Ha MAKCUMANLHY GUCOMY 8PAXYBAHHA CUMU 10O0B020 ONOpPY NOBIMP 3MEHULYE
OabHICMb NOALOMY Ma 30i1bUYE il Ha hasi cnycky.

Ilposedeno docnioxcenns mpackmopii norbomy meepoo2o mina YuniHOpuyHoi 3 Keaopamuy-
HUM ONOPOM NOGIMPSL 3 PIZHUMU KYMAMU KUOAHHS MA NOYAMKOGUMU WUEUOKOCMAMY Ma N00OY006aHO
napa6onoio besnexu. 3a pezyromamamu 00CAIONCEHHS OYI0 6CMAHOBIEHO, WO OCHOBHUMU NAPAMEM-
pamu eniugy Ha OaIbHICIb NOJILOMY AGNAOMbCI BEIUYUHA HOYAMKOBOT UWEUOKOCHIE NOIbOMY MEePA0c0
mina ma 3HavenHs Kyma Kuoanus. Taxoow eusHaueHo, Wo 08 KOHCHO20 8UNAOKY OAIbHOCHE NOJIbOMY
MEHULOT MAKCUMATILHO OOCSIHCHOL ICHYE 081 MPACKMOPIi NOJbOMY 3 PI3HUMU 3HAYEHHAMU KYMA KUOAHHSL.
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B noodanvuux docniosxcenns Heobxiono nodyodysamu mooeni ma npogecmu 00CHiONCeH s 0a-
JECMUYHUX MPAEKMOPIL I3 YPAXYEAHHIM SNIUGY AMMOCHEPHUX MA NO2OOHUX YMOE.

Kniouosi cnoea: mamemamuune MOOen08anHsS NOTbOMY, OANCMUYHA MPAEKMOPIs, ONip
Cmoxca, onip Hotomomna.

Problem’s Formulation

One of the main properties of aerodynamics, which must be taken into account when modeling
the flight of solid bodies, is the consideration of air resistance. Construction and research of mathematical
models of such problems is important from both a scientific and an applied point of view. This makes it
possible to adequately assess the impact of aerodynamic forces on the object's flight, which is important
when designing aircraft and artillery ammunition. Therefore, further development of research methods of
mathematical models of ballistic flight trajectories of solids of different shapes is quite relevant.

Analysis of recent research and publications

A few scientific works are dedicated to the investigation of various aspects of mathematical
models for studying the ballistic flight trajectories of solid bodies. For instance, in the paper [1], the
results of three possible trajectory approximations are provided: a low-angle trajectory, a trajectory with a
large launch angle, and a trajectory where the horizontal velocity is approximately equal to the vertical
velocity. Closed-form solutions for the range of the first option are obtained using Lambert's W-function.
It was also noted that the range of trajectories for the considered cases is symmetric when the launch
angle is close to /4, while in other cases, the trajectories are asymmetric. In [2], explicit analytical ex-
pressions for calculating ballistic trajectories are constructed, allowing for the accurate determination of
the maximum height and the time of its attainment, as well as the flight range of the body at the highest
ascent. An important feature of this approach is its lack of restrictions on initial velocity, launch angle,
and the drag coefficient of the medium. Publication [3] discusses the application of the Laplace de-
composition method (LDM) for obtaining an approximate calculation of the two-dimensional motion of a
rigid body with linear air resistance. Using this method, an approximate solution to the ballistic problem
is derived, considering nonlinear dependencies. The issues of constructing a mathematical model and
increasing the accuracy of ballistic trajectory calculations for long flight ranges are addressed in [4]. The
construction of a mathematical model and the investigation of the Magnus force's influence due to the
nutation angle on the projectile trajectory are presented in the article [5]. However, the comprehensive
impact of the initial parameters considering the air resistance force has not been fully explored.

Formulation of the study purpose

Building a mathematical model and conducting a study of the ballistic flight trajectory of a

spherical and cylindrical solid body for various initial parameters taking into account air resistance.
Presenting main material

The problem of modeling and calculating the flight of a solid body with velocity v and angle ¢
between the velocity vector and the horizon line is considered. The origin of the coordinate system is
placed at the starting point of the body's flight, with the y-axis directed vertically upwards and the x-axis
directed horizontally, as shown in Fig. 1.
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Fig. 1. Scheme of calculating the ballistic flight trajectory
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During the motion of a solid body, the velocity is directed tangent to the trajectory of motion,
and its projections onto the coordinate axes are determined by the following relationships:
Uy =V COSQ, V) =V Sing. @
The initial velocity at t = 0 will be equal to vo, and the angle ¢ — is equal to ¢,. The force F
acting on the body during the flight will also be expressed as projections onto the Ox, Oy axes:
F, = Fcosg, E, = Fsing. (2)
The mathematical model of the motion of a solid body along a ballistic trajectory in projections
onto the coordinate axes will be expressed as follows:

mEx=p,
e } @

Let's note that during the flight of a solid body along a ballistic trajectory, it is subject to the
force of gravity and the force of air resistance, i.e., F = F; + Fy;,. The curvature and rotation of the
Earth are not taken into account. The force of gravity is constant and always directed downwards. The
force of air resistance is always directed opposite to the direction of motion in the surrounding medium
and its magnitude depends on the absolute velocity and the shape of the body:

Fair = =k - f(v), 4)
where k — empirical coefficient depending on the parameters of the body and the medium.

At low speeds, where the Reynolds number Re< 1, the dependence of the air resistance force on
the velocity of the solid body f(v) is linear (Stokes' drag). For spherical bodies, it is defined by the fol-
lowing relationship [6]:

Fuir = —6mvd - v, (5)
where v— the kinematic viscosity of the medium, d — the diameter of the body.

Thus, the equation of motion of a solid body of spherical shape in the direction of the coordinate
axes, taking into account the force of gravity and the Stokes drag force, is as follows:

dvy
m—==—Kvy
dvydt } ’ (6)

mwz—mg—kvy
where k = 6mvd.
For convenience, let's divide both sides of the equation by m:
dvy_ kK,
dvzt_ mk" } (7)
T ITmy
The initial conditions for the equations (6) of the flight of a spherical body are determined by the
initial parameters at the starting moment:

t=0: v,(0) =1v,cos e, (8
v),(0) = vy sing. 9)
Solving the system of equations (7) taking into account the initial conditions (8), (9), we obtain:
kt
vx(jr)lzvocoswe_ﬁm P (10)
vy(t)z—gT+(vosin<p+gT)e m

Displacement along the coordinate axes X, y is determined by the system of equations:
ax _ . _ 11
ac Vo g T Uy (1)

Let's substitute the expressions for velocities v,, v, from (10) into equation (11), and we'll

obtain the differential equations to determine the trajectory of the flight of the spherical body:
—’:=e_%vocos<p

d
T — | 12
For equations (12), the initial conditions are determined by the body's position at the origin of
the coordinate system at the starting time:
Att=0:x=0,y=0. (13)
By integrating equations (12) with consideration of the initial conditions (13), we obtain the
equation of the trajectory of the flight of the spherical body in parametric form:
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kt
x=mv0£os<p<1_e ﬁ>

PN (19
m| mg . gme m _kt .
V=%l & trosing—gt—=———e mv,sing

At Reynolds numbers Re >>1, the dependency of air resistance on velocity is quadratic
(Newtonian drag) and is defined as follows [6]:

. 1
Fair = —sign(v) -3 cgAp - v2, (15)

where ¢, — the coefficient of aerodynamic drag (c; = 0.47 for spherical bodies, c¢; = 0.82 for cy-
lindrical bodies), A — the cross-sectional area of the body, p — is the density of the medium,
sign(v) — the sign of the velocity of the body.

During the flight of a solid body, the force of frontal air resistance is directed in the opposite
direction of the body's movement, and accordingly, in the mathematical model, during the ascent phase,
it has a negative sign along the y-axis, and during the descent phase, it has a positive sign. Therefore, to
account for this peculiarity in the trajectory of the flight, during the ascent phase, we will use equations
with air resistance directed downwards (y;), and during the descent phase, upwards (y,). Thus, the
system of equations describing the motion of the solid body with consideration of Newtonian air re-
sistance will be expressed as follows:

dvy _

uvx__ _ 2
m—_t= kvy
dv
yi__ _
G = Mg—kvy,? ’ (16)
dv
Y2 2
m——=-m kv
ot g+ KVy;

where k = %chp.
The solution to the system of equations (16) considering the initial conditions (8), (9) will be
expressed as:

__ mvgcos@
vx(6) Tktvgcosp +m

vy1(t)= /%tg(arctg(%)— %‘gt)
m .
( R Hvosing .e—zt\/Z”’f_1> . (17)
{mg .
v (t) _ ﬂ T—vosmw
y2 - .
k /%H;osm(p ~e_2t‘/Z”Il(+1
%—vosimp )

Accordingly, the ballistic trajectory of the solid body's flight will be determined by the fol-
lowing system of equations:

dx___mvgcose
dt~ ktvgcosg +m

. k
dy,_ [mg vosm(p\g _ [kg
T / " tg(arctg( 7 ot
%ﬂ:osimp ot 9K . (18)
.e m_q
dy m m—vosimp
2 mg AN k
dt k MG 4 vasi k
oSing —2t gK
k . m41

e
,%—Vosimp )

By integrating equations (18) with consideration of the initial conditions (13), we obtain the
equation of the trajectory of the flight of the solid body in parametric form:
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m (ktvocos(p+1) 3

Y2 = \/@t + (- (19)
%+Uo$lﬂ.(ﬂ ztr Zt\/%
& ~vosing

J@ﬂzosin(p
J@—vosimp
In this case, the continuity of the flight trajectory during the ascent and descent phases is ensured
by the conditions: when t = t, max. Y1 = V2! % = % =0

The time it takes for the body to ascend along the trajectory to its maximum height is determined

as follows:
k
Vvm arc:tg(vosm(p )

NG
thmax = \/k_g

Using the functions described above, we will construct the flight trajectory of solid bodies of
spherical and cylindrical shapes. Assuming that the flight of the cylindrical body is gyroscopically stable,
based on the expressions (19), we obtain the dependencies of flight trajectories for various initial pa-
rameters shown in Fig. 2, 4. The results of calculating the flight trajectories of a spherical body using
expressions (14) for different values of initial velocity and launch angles are presented in Fig. 3.

m
+Eln

(20)
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Fig. 2. Flight trajectories of a cylindrical body with and without consideration of air resistance
force at an initial velocity of 200 m/s

The analysis of the results presented in Fig. 3 and 4 shows that as the initial velocity of the cy-
lindrical body increases, the angle required to achieve the maximum flight range decreases. At high
velocities, this value becomes slightly less than m/4, which ensures maximum flight range without
considering air resistance. With increasing velocity, the influence of horizontal velocity on the flight
range increases.

The results of calculating the ballistic trajectories of the cylindrical solid body for various initial
velocities and different launch angles allow us to construct a paraboloid of ballistic trajectories known as
the safety paraboloid, presented in Fig. 5.
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Fig. 3. Flight trajectories of a spherical body with different launch angles ¢ and initial velocities

(a) — 100 m/s, (b) — 200 m/s, and (¢) — 300 m/s
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Fig. 4. Flight trajectories of a cylindrical body with different launch angles ¢ and initial veloc-

ities (a) — 100 m/s, (b) — 200 m/s, and (c) — 300 m/s
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Fig. 5. Paraboloid of ballistic trajectories of a solid cylindrical body flight

Conclusions

The analysis of the conducted research shows that the obtained analytical solutions provide a
comprehensive understanding of the trajectory of motion of a solid body and allow for the investigation
of the dependence of flight trajectories for various initial conditions of the problem. The flight range of
a solid body is primarily determined by the parameters of the initial velocity and the launch angle. The
solution for the case of quadratic dependence of the air resistance force has the peculiarity of taking into
account the direction of the body's flight. For the ascent phase of the body to its maximum height,
considering the air resistance force reduces the flight range, while it increases during the descent phase.
It is also noted that for each case of flight range smaller than the maximum achievable, there are two
flight trajectories with different launch angles.
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