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The article presents the results of the study of the influence of external forces, resonance and
damping on the amplitude of oscillations, as well as the relationship between oscillation and the level
of generated sound pressure for mechanical systems with one and two degrees of freedom. An analysis
of the Lagrange equation, the frequency of natural oscillations, the transmission of dynamic forces
through vibrations and their influence on the noise intensity and the level of the generated sound pres-
sure is carried out. The paper proposes a method for evaluating vibrations and the effectiveness of
isolation of the propagation of sound waves in space.
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Axmyanvricme cmammi 00yMo6ieHa HeOOXIOHICMIO 00CHI0NHCEHH MEXAHIYHUX 8i0payitl 3 Me-
Mmoo OibUl OOCKOHAILHO2O PO3YMIHHI MEXAHI3MI8 PO3NOBCI00JCEHHSL 38YKOBUX X8UTb IO Odicepen ix
eenepayii, wo dacmv 3mo2y pospodbumu Oinbul eexkmueni memoou ix i301ayii ma ocaabieHHs npu
BUPILEHH] NUMAHbL ONMUMI3AYIT POIMILEHHS 36YKOGUX 0HCEPEN eKCMPEHO20 ONOBIWEHHS HACCNEeHHS.
Takoorc 8uBYeHHsl PI3HUX ACNeKMI8 8IOpaYIUHUX A8UW, MA IX NAUBY HA KOHCMPYKYIUHI elemenmu 00-
360UMb ONMUMIZY8AMU KOHCIMPYKYIIO I0N0GIOHUX NPUCMPOI8 O NIO8ULeHHs iXHbOoI HaditiHoCcmi ma
008208IYHOCII.

Memoio docniddcenns € ananiz mexaniyHux 8iopayitl y cucmemax 3 0OHUM ma 08oMa cmene-
HAMU C80000U, PO327150 GNIUBY AMOPMU3AYIL MA PE3OHAHCY HA AMNIIMYOY KOTUBAHb, d MAKOMC GUHA-
YEHHSL 83AEMO38 SI3KY MidiC 8iOpayiamu ma pienem 36yK08020 MUCKY CReYIaNi308aHUX NPUCTHPOIS.

Ilpogedeno 0ocniodicenHs OCHOBHUX ACNEeKMi6 MeXAHIUHUX 8i0payill, 30Kpema, ix 6UHUKHEHHS,
PO32IAHYMO 0COOIUBOCHT BUMYUIEHUX MA BIIbHUX KOIUBAHL, A MAKONC MemoOU pO3PAXyHKY napamem-
pie makux cucmem. byno posensanymo mamemamuuni MoOeni Ha OCHOBL OUhepeHYiarIbHUX PIGHSHb Dy-
Xy 0114 cucmem 3 OOHUM MA 080MA CIMENEHAMU C80000U, U0 00360E NPOBOOUMU PO3PAXYHKU DiGHS.
8ibpayill 0151 NPYIHCHUX cucmem, 30Kpema OJisl eNeKMPUYHUX Mawunu ma mpancgopmamopis. Taxooic
6CMAHOBNEHO (DYHKYIOHANLHULL 38 30K 4ACMOmM I aMnaimyo KOIUGaHb, COOPMYIbOBAHI YMOBU PE30HA-
HCY ma 1020 6NaU8y Ha ehekmusHicmy i be3nexy pobomu 0OIAOHAHHS.
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Ilposedeno ananiz numans nepedaui 8i6payiti HA HeCyyi KOHCMPYKYIL CReYianiz08aHux eiexkm-
POHHUX NPUCMPOIB, HABeOeHO opmynU ONa U3HAUEHHA Koepiyienma amopmu3ayii ma nepeoaui, wjo
003601UMb ehekmugHiule oyiHumuy enaus ix eiopayii Ha 8i0NOGIOHI CROPYOU, WO HAOACTb MONCIUBO-
Ci ONMUMI3Y8AMU MICYs IX POIMIWYEHHSL.

Knwouogi cnosa: mamemamuuna Mooenb MEXAHIUHUX KOTUBAHb, AKYCMUKA, AKYCMUYHI XGUT,
38yK0i301AYis, 8ibpayii.

Problem’s Formulation

The propagation of sound waves, both information and noise, has an adverse effect on hu-
mans. Prolonged exposure to noise leads to the development of chronic fatigue, decreased perfor-
mance, and symptoms such as poor sleep, drowsiness, hearing loss, and impaired thermoregulation. In
the case of a constant noise background of up to 70 dB, endocrine and nervous systems are affected,
up to 90 dB — hearing is affected, up to 120 dB — physical pain, which can be unbearable. It should
be noted that the normalized noise parameters are sound pressure levels in octave bands with geome-
tric mean frequencies of 63, 125, 250, 500, 1000, 2000, 4000 and 8000 Hz, and the energy equivalent
sound level in decibels on the A scale should not exceed the permissible levels of 110, 94, 87, 81, 78,
75, 73 dB, respectively. Noise not only worsens human health, but also reduces labor productivity by
15—25 %, so the improvement and development of methods for studying the mechanisms of its for-
mation and regulation is extremely important.

Mechanical vibrations also have a significant impact on the reliability and efficiency of vari-
ous machines and mechanisms. Forced oscillations caused by external excitatory forces can cause sig-
nificant mechanical stresses, reducing the performance of equipment. In addition, the interaction be-
tween vibrations with different numbers of degrees of freedom and damping also generates complex
effects, including resonance, which leads to a significant increase in the amplitude of vibrations. All of
this makes it difficult to effectively isolate vibrations and noise, which is a key task in the design and
installation of emergency information systems for the public and industrial equipment.

Analysis of recent research and publications

A number of scientific papers have been devoted to the study of various aspects of mechanical
vibrations and acoustic wave propagation. For example, in [1], you can learn more about vibrations
and mechanical oscillations. In particular, you can see examples of research and discussions on vibra-
tion damping control using particles in vacuum packaging. It also describes the effect of material
properties on vibration frequency. The same topic was further developed in [2], where, after consider-
ing the problem, it is recommended to develop an acoustic-mechanical meta-surface with combined
vibration reduction and sound absorption functions.

In a more general way, the basic basis and problems of vibrations, waves and acoustics can be
found in [3]. Paper [4] discusses the various possibilities of using mechanical vibrations for technolo-
gical processes and gives directions for further possible vibrating equipment. The behavior of mechan-
ical vibrations and acoustic waves in continuous mechanical systems is described in [5]. For a more
experimental approach to the topic, where the results of real experiments in various aspects of elastici-
ty, acoustics, and vibration are used, see [6].

Formulation of the study purpose

The purpose of the study is to analyze mechanical vibrations in systems with one and two de-
grees of freedom, to consider the effect of damping and resonance on the amplitude of vibrations, and
to determine the relationship between vibrations and noise in specialized equipment.

Presenting main material

Mechanical vibrations. A noise source is any physical process of change in sound pressure or
mechanical vibrations in solid, liquid or gaseous media. In most cases, the causes of vibrations lead to
acoustic vibrations within the frequency spectrum of audible noise and beyond, so it is possible to
study both phenomena at once, as they are very similar and the differences can only be established
conditionally, although some of the results of the analysis may be quantitatively different.

It is known that under the influence of a short shock or impact, an elastic system performs os-
cillations, which are called natural or free oscillations, because they occur after the shock without the
participation of external forces. In sound signal generators and other electrical machines, external
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forces (excitatory forces) are always acting, and therefore this leads to forced oscillations, which are a
special case of free oscillations. It should also be noted that most often the study of machine vibration
isolation and attenuation is associated with the study of systems with one or two degrees of freedom.

One of the simplest oscillatory systems with one degree of freedom can be represented by a
mass m suspended on a spring with constant elasticity that can move vertically in the x-direction.

We can assume that this mass is subject to a certain external periodic force Fysinwf and that
there is a cushioning (damping) mechanism with an attenuation coefficient r between the mass and the
suspension point. In this case, the law of motion of the above system is determined by formula [7]:

2
m%+r%=FD sin wt. (1)
The general solution of the differential equation (1) is written as follows:
x = e zm' X, cos(w,t + @) + Xsin(wt — @). 2

where X; and ¢, — are integration constants that are a function of the initial conditions, and the oscil-
lation parameters w4, X and ¢ are determined by the formulas:

_ |k r2
W1 = m_ 4m?’ (3)
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Each of the two terms in equation (1) represents a specific vibration motion: the first represents free
damped oscillations, and the second represents forced oscillations. After a certain time after the start of the
motion, the free oscillations completely dampen, and the system performs only forced oscillations as a result.

The amplitude of forced oscillations is determined by the following formula:
Xst

X = 2 , (6)
w \2 r ow)\?
T
where ax is the natural frequency,
Wy = \/k/_m, (7)
Xs — static deflection,
Xt = Fy/k; (8)
r.r — critical attenuation,
Ter = 2myy = 2Vmk. 9)

It follows from formula (6) that the amplitude of oscillations reaches its maximum value at

w = w, and is defined as follows
Xmax = Flor . (10)
In this case, in the case of forced vibrations that do not have damping (r = 0), the amplitude
increases infinitely, i.e., the system resonates. Also, with the increase of the damping properties of the
system, namely, the greater the value of the coefficient r, the max-
§ imum value of the vibration amplitude will decrease. It should
also be noted that low-frequency vibration dampens more slowly

m>—+ than high-frequency vibration.
—lxz In some cases, when no external disturbing force acts on
g I the system (F = 0) and there is no damping (r = 0), the system will
perform harmonic oscillations according to the sinusoidal law of
m—+ motion, as follows from equation (1).
—1X1 Now let us consider the oscillations of a mechanical sys-
§ k, tem with two degrees of freedom, whose model is shown in Fig. 1.

The system consists of masses m; and m,, suspended on springs

) ) with constant elasticity coefficients k; and k, and connected by a

Fig. 1. Diagram of a  gspring with a constant elasticity coefficient, k. The positions of the

mechanical system with two  mgsses relative to the fixed mark are determined by the indepen-
degrees of freedom dent displacements x, and x, in the vertical direction.
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Taking into account the absence of damping, such a system can be classified as conservative
with the potential energy defined as follows:

1 1 1
VVp - Eklxlz +Ek2xg +Ek(xl _xZ)z. (11)
Since the external forces acting on the system are derivatives of the potential energy for the cor-
responding parameter with the opposite sign, the Lagrange equations in this case are written as follows:

d? aw,
le =——=—kyx; — 737(951 —X3);

dt dxq

d?x, dwy (12)
acz - ax, = —kpx; — k(x; — x3).

Assuming that the masses m; and m, perform harmonic motions with different amplitudes but
the same frequency w, from the system of equations (12) we obtain expressions for determining the
natural frequencies of the system:

@

1
o = \/E[(wf + 03) £ (? — B)? + 4/1201%@%], (13)
where w;and w, — are the frequencies of natural oscillations,
2_k1+k_ 2_k2+k_
wl - m. 0)2 - m, ) (14)

1
u — is the coefficient of connection, which is defined as follows:

L= Tomo (15)

Analysis of the solution to (13) shows that:

1) A mechanical system consisting of two interconnected oscillating bodies has two natural
frequencies w’y and w".

2) The frequency of natural oscillations of the system depends on the frequencies of natural
oscillations of the bodies taken separately and on the coefficient of coupling between the bodies .

3) If the coupling coefficient between the bodies u = Othen the frequencies of natural oscilla-
tions w’y and w'’, coincide with w,and w, which means that each system oscillates independently of
the other.

4) If u =1, i.e., the masses of the system are rigidly coupled, then one of the natural oscilla-

tion frequencies is equal to (w’, = 0), and the other has the maximum value equal to the (w”o =

JoZ + w?).

The two-degree-of-freedom system under consideration is most often found in installations
with electrical machines and transformers.

When installing machines, it is usually a requirement that the force transmitted from the ma-
chine to the supporting structure should be as small as possible. This force can be determined by the
transmission coefficient Cyans , Which is the ratio of the maximum elastic force F, transmitted by the
system to the base to the maximum applied force F. In the case of an unbalanced machine with mass m
mounted on a base whose equation of motion is defined by formula (1), the transmission coefficient is
equal to:

T W 2
_ Bl ey __ J1rapry?
Corans = ey = [T Gyep, (v @)~ Ja-roerageye (o)
=) | + )
where £ is the relative transmission coefficient, yis the frequency ratio,
r
B=—"—y=—. (17)
CR 0
The angle between the forces F and F, is determined by the expression
tgp = 2 = 2 (18)

k-mw? 1-y2
The analysis of the relations (17) shows that at the ratio of frequencies y = +/2 for any value
of the relative transmission coefficient § the transmission coefficient Cy,ns = 1. At § = 0 the value of
the transmission coefficient will be determined as follows:
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1

Cerans = vt (19)

The ratio of frequencies at which the transmission will have the maximum value:

— 2

y= [ (20)
c It follows from formulas (16)
oy and (20) that the maximum transmission
40 \\ value depends only on the value of the
> S coefficient 8. The dependence of the
10 — values of the maximum transmission
° \\\ coefficient Cyans On the values of the
> ~] relative depreciation coefficient g is
1 o shown in Fig. 2. With a slight damping
0.0t ©.0> o-1 c.s 1B of the system oscillations, the transmis-

Fig. 2. Dependence of the maximum transmission  sion coefficient is calculated as follows:
ratio on the values of the relative depreciation ratio C =1p (21)
trans.max 2 .

Note that the oscillation power level is calculated by the formula:
Ly = 10lg—, (22)
0

where P is the average value of oscillation power for a quarter of a period; P, = 10° m /s® = 10°
W/Kg is the reference power for systems with a mass equal to one.

In this case, the reference power is calculated for a frequency of 1 Hz, and the oscillation
power level has the same dimension as the intensity level. Accordingly, the oscillation power of a unit
mass for a quarter of a period is determined by the ratio:

P =8m? X?f3, (23)
where X is the amplitude of the harmonic oscillation with frequency f.

The presented algorithm for calculating the vibration power allows classifying and determining
the most effective ways of isolating foundations and silenced chambers in order to select the optimal
method of installing the relevant equipment to reduce the level of noise generation and transmission.

It is important to note that vibrations of bodies excite sounds, provided they are in the fre-
guency range perceived by humans. During the process of oscillations, the amplitude of movements
determines their intensity only partially. Based on the results of oscillation studies, it can be concluded
that the corresponding noise level is determined by the amplitude of the surface vibration velocity.

During vibrations of large surfaces, the pressure of the radiated acoustic wave is proportional
to the vibration velocity v:

v=—, (24)

Zc
where Z. — is the specific acoustic impedance.
The direct relationship between acoustic pressure and vibration velocity allows you to estab-
lish a correlation between the level of vibration velocity and the level of acoustic pressure, expressed
in decibels:

LzZO@%zZO@%, (25)

where 9 = 5. 10-8 m/s is the reference value of the air vibration velocity corresponding to the threshold
value of the acoustic pressure and calculated by formula (23). Therefore, the level of acoustic pressure
can be obtained from the level of surface vibration velocity without measuring it.

The radiation can be attenuated if the generating surfaces are small compared to the wave-
length of the emitted waves, as strong vibrations of small parts of the mechanism will not be able to
cause much noise. This is why small-sized equipment is good at generating high-frequency vibrations
(short-wave vibrations), and large-sized equipment, in turn, is good at emitting high and low sounds.
Therefore, it is obvious that in order to determine the noise frequency spectrum, not only the ampli-
tude of the surface vibration rate is required, but also the parameters of the generating mechanism,
which converts vibrations into acoustic energy.
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An important characteristic of noise is its frequency composition. If the noise composition is
dominated by sounds with a frequency of oscillation up to 400 Hz, such noise is called low-frequency
noise, if it is dominated by sounds with a frequency of 400—1000 Hz, it is called medium-frequency
noise, and if it is above 1000 Hz, it is called high-frequency noise. Low-frequency noise with an in-
tensity of up to 100 dB does not cause a noticeable adverse effect on the hearing organ; for medium-
frequency noise, this standard is 85—90 dB; for high-frequency noise, 75—85 dB. Normalized para-
meters of sound pressure levels in octave bands for geometric mean frequencies are given in Tabl. 1. It
should be noted that high-frequency noise has a particularly dangerous effect on the human body.

Table 1. Normalized sound pressure levels for different frequency values

Oscillation parame-
ters
Average frequencies
of octave bands, Hz
Maximum acoustic
pressure level, dB

Numerical values of sound vibration parameters

63 125 250 500 1000 2000 4000 8000

110 94 87 81 78 75 73 71

Reducing the intensity of low-frequency vibrations of the equipment reduces the magnitude of
dynamic forces and, therefore, reduces the high-frequency vibrations of the parts, i.e. the sound pres-
sure level.

Conclusions

The results of the study of the impact of mechanical vibrations on the generated sound pressure
level revealed significant effects of external excitatory forces on the operation of equipment. Forced
oscillations occurring in systems with one and two degrees of freedom can significantly increase the
level of mechanical loads, especially in cases of resonance. The correct assessment of the amplitude and
frequency of these vibrations, as well as the application of effective vibration isolation methods, can be
key factors in ensuring reliability and reducing sound pressure levels in the operation of the equipment
concerned. The development and implementation of sound measures during the installation and opera-
tion of equipment can significantly improve its efficiency and extend its service life.
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