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APPLICATION OF THE OPERATOR GENETIC ALGORITHM
FOR SOLUTION OF DIOPHANTINE EQUATIONS

ЗАСТОСУВАННЯ ОПЕРАТОРНОГО ГЕНЕТИЧНОГО АЛГОРИТМУ
ДО РОЗВ’ЯЗАННЯ ДІОФАНТОВИХ РІВНЯНЬ

The paper presents the results of the study of the effectiveness of the operator genetic algo-
rithm when applied to the solution of Diophantine equations.

As is known, the solution of Diophantine equations is performed in the ring of integers. In this
paper, the operator genetic algorithm, which operates in the field of real numbers, is adapted in a
certain way for finding integer solutions. The research topic of this paper is of interest considering
that Diophantine equations play a major role in mathematical methods of cryptology. On the other
hand, the history of these equations is so rich and majestic that getting even a small result in this field
is important for every mathematician. Great mathematicians of different eras were engaged in the
study of Diophantine equations, and even today these studies have not lost their significance.

Keywords: involutive operator, stochastic operator, fitness function, n-dimensional hyper-
cube, binary code, Gray code, Diophantine equation.

У роботі приведено результати дослідження дієвості операторного генетичного ал-
горитму при застосуванні до розв’язання діофантових рівнянь.

Як відомо розв’язання діофантових рівнянь виконується у кільці цілих чисел. У роботі
операторний генетичний алгоритм, який діє в полі дійсних чисел, певним чином пристосовано
для пошуку цілих розв’язків. Тема досліджень даної роботи представляє інтерес з огляду на
те, що діофантові рівняння відіграють велику роль у математичних методах криптології. З
іншого боку, історія цих рівнянь настільки багата і велична, що отримання, хоч незначного,
результату в цій галузі є важливим для кожного математика. Дослідженнями діофантових
рівнянь, займались великі  математики різних епох і сьогодні ці дослідження не втратили своєї
значущості.

Ключові слова: інволютивний оператор, стохастичний оператор, фітнес-функція,
n-вимірний гіперкуб, бінарний код, код Грея, діофантове рівняння.

Problem’s Formulation
Diophantine equations, despite the thousand-year history of their study, remain the subject of

scientific research of theoretical mathematics, particular number theory. Today, with the development
of computing technology, the results of these studies have found application in applied fields, in par-
ticular in the mathematical foundations of cryptography and in computer science itself. Modern com-
puting has given impuls to the search and development of new algorithmic approaches to solving Dio-
phantine equations. The relevance of the search of such algorithms, including iterative ones, is con-
firmed by a significant number of scientific works of the modern mathematical community. This work
is devoted to the problem of developing an algorithm for solving Diophantine equations.
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Analysis of recent research and publications
There are many topics devoted to the study of Diophantine equations. Among which the fol-

lowing are closest to the algorithm given in this work: in the paper ([5]), among the given examples of
the application of the genetic algorithm to optimization problems, there are examples of solving Dio-
phantine equations with a large number of unknowns; the papers ([6],[7]) give the results of applying
Diophantine equations to encryption methods; the paper ([8]) investigates the algorithm of using a
neural network to determine integer solutions; the paper ([9]) examines a type of Diophantine equation
important for cryptography 3௫ + 7௬ = -ଶ. These publications testify to the scientific relevance of reݖ
search of Diophantine equations and their applications in cryptography. Providing a complete list of
scientific works in this direction over the past 5—8 years is not possible within the scope of this article.

Formulation of the study purpose
Statement of the problem: to develop a version of the operator genetic algorithm for solving

Diophantine equations, to investigate the effectiveness of the operator genetic algorithm when apply-
ing it to the solution of known Diophantine equations.

Presenting main material
The paper presents a version of the operator genetic algorithm (OGA), the description of

which is given in the author's works ([1—4]), adapted to the solution of Diophantine equations, and
examples of linear and nonlinear equations of different types with different number of unknowns are
considered.

To solve Diophantine equations, which are considered on the set of integers, this work uses
modified in a certain way operator genetic algorithm that operates in the field of real numbers. The
research topic of this work is of interest considering that Diophantine equations play a major role in
the mathematical methods of the theory of cryptography. On the other hand, the thousand-year history
of the study of Diophantine equations testifies to their significance in mathematics. Great mathemati-
cians of different eras were engaged in the study of Diophantine equations, and today these studies
have not lost their importance. In 1900, at the World Mathematical Congress in Paris, David Hilbert
formulated the important mathematical problems of the next century in his report. Among them, there
is 10th problem formulated as follow: "Let a Diophantine equation with arbitrary unknowns and integ-
er rational numerical coefficients be given. Specify the method by which it is possible, after a finite
number of operations, to determine whether this equation is solvable in integer rational numbers." In
1970, Yuriy Matiyasevich solved this Hilbert problem, proving the algorithmic intractability of the
problem of building a universal algorithm for finding solutions to Diophantine equations. This fact is
the basis for the use of the so-called "Diophantine difficulties" in modern cryptography.

In this work, a version of OGA is presented, which allows finding solutions of Diophantine
equations. The OGA determines an integer solution of the equation, if at some iterative step the best
point falls into the unitary neighborhood of the solution. In this case, some of the vertices of the
neighborhood (n-dimensional hypercube) with integer coordinates will deliver the solution of the equ-
ation. Therefore, at each step of the algorithm, the vertices of the unitary integer neighborhood ob-
tained by approximation are determined.

This work presents a version of OGA for finding solutions of Diophantine equations of two or
more variables, both linear and nonlinear. The effectiveness of the algorithm is analyzed on specific
examples.

The operator genetic algorithm for finding integer extremal points.
Let’s consider the Diophantine equation ,ଵݔ)ܲ ,ଶݔ … (௡ݔ = 0, where P — a  polynomial  of  n

variables with integer coefficients. The solution of this equation can be reduced to the problem of find-
ing an integer solution, which delivers the minimum value(s) of the function (ݔ)ܨ = ,ଵݔ )ܲ| ,ଶݔ … |(௡ݔ
defined in a closed region ߗ ∈ ܴ௡ , which is defined as follows:

ߗ = ൛(ߦଵ , . . . , (௡ߦ : ܽ௠ ≤ ௠ߦ ≤ ܾ௠ ,  ݉ = 1, ݊ൟ.
Region is some ߗ n-dimensional hypercube in space ܴ௡  with a "cubic" norm ‖ݔ‖ =

ݔܽ݉
௝

{ ߦ| |}. Binary Gray codes are unambiguously assigned to the vertices of this hypercube ߗ ∈ ܴ௡ ,

in such a way, that the vertex with the minimum coordinate values ܣ = (ܽଵ, . . . ,  ܽ௡) has a zero code,
and the vertex with the maximum coordinate values В = (ܾଵ, . . . , ܾ௡) has  a  unitary code.  Hypercube
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ߗ ∈ ܴ௡  has 2௡ vertices consisting of 2௡ିଵ pairs of "opposite" vertices that are at the maximum Ham-
ming distance.

To determine the coordinates of all vertices of a hypercube, it is enough to have the coordi-
nates of two vertices ܣ = (ܽ ଵ , . . . ,   ܽ ௡) and ܤ = (ܾ ଵ , . . . ,    _ ௡).

For the operator matrix ෠ܲ௝௞ = ቆ ௝ܲ
௞ ܫ − ௝ܲ

௞

ܫ − ௝ܲ
௞

௝ܲ
௞ ቇ, where ௝ܲ

௞ݔ = ௝ܲ
௞(∑ ௜݁௜ߦ

௡
௜ୀଵ ) = ∑ ௜݁௜ߦ

௞
௜ୀ௝ ,

where ݔ∀ = ,ଵߦ) . . . , (௡ߦ ∈ ܴ௡  and {݁ଵ, . . . , ݁௡} ⊂ ܴ௡ orthonormal basis, let's accept the notation ෠ܲ ,(ߪ)
where ߪ = ,ଵߪ) . . . , (௡ߪ the binary code, defining the vertex coordinate permutation operator [1]. Ap-
plying operators ෠ܲ to a vector composed of vertices (ߪ) ܣ = (ܽଵ, . . . , ܽ௡) and В = (ܾଵ, . . . , ܾ௡), we
obtain all pairs of vertices that are maximally distant.

The number of operators ෠ܲ depends on the dimensionality of the space (ߪ) ܴ௡ , that is equal to
2௡ିଵ − 1.

To find the minimum value of the function we choose pairs of hypercube vertices with ,(ݔ)ܨ
the maximum Hamming distance between them. So, these are pairs of hypercube vertices:

ఙೕܣ = ܹ൫ߪ௝൯ = ቀݓ൫ߪ௝ଵ൯, . . . , ߪ൫ݓ 牡௡൯ቁ, ఙ̄ೕܣ = ܹ൫̄ߪ௝൯ = ቀݓ൫̄ߪ௝ଵ൯, . . . , ,௝௡൯ቁߪ൫̄ݓ ݆ = 0, . . . , 2௡ିଵ.

Let's consider vectors ෠ܺ௝ = ቆ
ܹ൫ߪ௝൯
ܹ൫̄ߪ௝൯

ቇ = (ߪ)ܲ ቀܣ
ቁܤ ∈ ܴ௡ × ܴ௡ ,   ݆ = 0, . . . , 2௡ିଵ .

Let's apply stochastic operators to these vectors ෠ܲ(ߙ), ෠ܳ(ߚ) ∈ ௡ܴ)ܮ × ܴ௡ × ܴ௡)
෠ܲ(ߙ) = ൬ (ߙ)ܲ ܫ − (ߙ)ܲ

ܫ − (ߙ)ܲ (ߙ)ܲ ൰, ෠ܳ(ߚ) = ൬ܫ − (ߚ)ܳ (ߚ)ܳ
(ߚ)ܳ ܫ − ,൰(ߚ)ܳ

where ,(ߙ)ܲ (ߚ)ܳ ∈ ;௡ܴ)ܮ ܴ௡), which act as follows: ݔ∀ = ,ଵߦ) . . . , (௡ߦ ∈ ܴ௡

ݔ(ߙ)ܲ = ∑)(ߙ)ܲ ௜݁௜ߦ
௡
௜ୀଵ ) = ∑ ௜ߦ௜ߙ ௜݁

௡
௜ୀଵ ,

ݔ(ߚ)ܳ = ∑)(ߚ)ܳ ௜݁௜ߦ
௡
௜ୀଵ ) = ∑ ௡ି௜ାଵ݁௜ߦ௜ߚ

௡
௜ୀଵ ,

where ߙ = ,ଵߙ) . . . , ,(௡ߙ ߚ  = ,ଵߚ) . . . , (௡ߚ ∈ ܴ௡, {݁ଵ, . . . , ݁௡} ⊂ ܴ௡  basis, we will get:
෠ܲ(ߙ) ෠ܺ௝ = ෠ܲ(ߙ)ܲ(ߪ) ቀܣ

ቁܤ = መܼ௝ = ቀ
௝ଵݖ
௝ଶݖ

ቁ, ෠ܳ(ߚ) ෠ܺ௝ = ෠ܳ(ߚ)ܲ(ߪ) ቀܣ
ቁܤ = ෠ܸ௝ = ቀ

௝ଵݒ
௝ଶݒ

ቁ,
where ߙ = ,ଵߙ) . . . , ,(௡ߙ ߚ = ,ଵߚ) . . . , ,(௡ߚ 0 ≤ ௜ߙ < 1, 0 ≤ ௜ߚ < 1, stochastic vectors.

The result of these actions are vectors, the components of which are the points of the search
area with real coordinates, for which the values of the .function are calculated (ݔ)ܨ

,௝௞൯ݖ൫ܨ ,௝௞൯ݒ൫ܨ ݇ = 1,2, ݆ = 1, . . . , 2௡.
After determining for each iterative step, the best point of the space ܴ௡ , it is necessary to find

the value of the fitness function at the vertices of its unitary cubic neighborhood with integer vertices.
To obtain such a neighborhood of point ܼ௜(ݖଵ

௜ , ଶݖ
௜ , … , ௡ݖ

௜ ) need to determine points ܼ଴
௜ ଵݖ)

଴ , ଶݖ
଴, … , ௡ݖ

଴)
and ܼଶ೙ିଵ

௜ ଵݖ)
ଶ೙ିଵ, ଶݖ

ଶ೙ିଵ, … , ௡ݖ
ଶ೙ିଵ) with integer coordinates such, that ∀݇: ܼ௞

଴ ≤ ௞ݖ
௜ ௞ݖ   ,

ଶ೙ିଵ ≥ ௞ݖ
௜  and

the Euclidean distance between them ฮܼ଴
௜ − ܼଶ೙ିଵ

௜ ฮ = √݊. If the vertex ܼ଴
௜  with the minimum coordi-

nate values is assigned a zero binary code, and the vertex ܼଶ೙ିଵ
௜  with the maximum coordinate values,

respectively, a unitary code, then the Hamming distance between them will be maximal and equal to n.
Applying operators ෠ܲ to the vector composed of vertices (ߪ) ܼ଴

௜   ܼଶ೙ିଵ
௜ , we will obtain at the

i-th iteration step all maximally distant pairs ܼଵ, ܼଶ೙ିଶ; ܼଶ, ܼଶ೙ିଷ … of vertices of the hypercube
(which is a unitary neighborhood of point ܼ௜(ݖଵ

௜ , ଶݖ
௜ , … , ௡ݖ

௜ ) ) with integer coordinates. Suppose that
point ܦ ∈ ܴ௡ ܦ = (݀ଵ, . . . , ݀), is a solution of the Diophantine equation. At the same time, it is one of
the vertices of unitary hypercubes. Therefore, point ܼ௜(ݖଵ

௜ , ଶݖ
௜ , … , ௡ݖ

௜ ) falling into one unitary neighbor-
hood of point ܦ = (݀ଵ, . . . , ݀), means that when calculating the value of the function -at the ver (ݔ)ܨ
tices of this neighborhood, we must determine the integer solution of the equation, that is, point At .ܦ
the same time, the Euclidean distance from point  ܼ஽(ݖଵ

௜ , ଶݖ
௜ , … , ௡ݖ

௜ ) to each of the vertices of the result-
ing integer cubic neighborhood does not exceed √݊.

Thus, for a certain finite number of attempts to select operators ෠ܲ(ߙ), ෠ܳ(ߚ) ∈
௡ܴ)ܮ × ܴ௡; ܴ௡ × ܴ௡) [1], we will obtain a solution. Note, that the algorithm can determine several
different solutions in a finite number of steps.
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At each iterative step, the OGA forms almost always (except for the cases of applying the mu-
tation procedure [1]) a new search area, with a measure smaller than the area of the previous step.

It should be noted, that the search area for the minimum points of the function
,ଵݔ)ܲ| ,ଶݔ … ௡ݔ  )| can expand, move, and go beyond the initial area at some iteration steps, which is ,ߗ
explained by the nature of the action of stochastic operators ෠ܲ(ߙ), ෠ܳ(ߚ) ∈.

Application to Diophantine equations.
Consider the Diophantine equation ,ଵݔ)ܲ ଶݔ , … (௡ݔ = 0, where P — is a polynomial of n va-

riables with integer coefficients. As known, the solution of this equation is defined in natural or integer
numbers. Consider the function (ݔ)ܨ = ,ଵݔ)ܲ| ,ଶݔ … ௡ )|. If the equation has solutions, then at theseݔ
points the function takes the minimal zero value.

Let us consider examples of application to some Diophantine equations.
The effectiveness of the operator genetic algorithm will be demonstrated by a series of numer-

ical experiments for Diophantine equations with different number of unknowns, both linear and nonli-
near. For each type of equation, the experiment consists of 20 trials. Each trial, in turn, consists of a
series of attempts that are performed until a positive result is obtained. For equations with the number
of unknowns no more than 5, each attempt consists in applying a pair of operators ෠ܲ(ߙ), ෠ܳ(ߚ) ∈
௡ܴ)ܮ × ܴ௡ ; ܴ௡× ܴ௡),  obtained randomly and in a  complete  review of  all  the vertices  of  the unitary
neighborhood to which the best point of a given iterative step has fallen. If the number of unknowns
increases, then a complete review of all vertices of a unitary hypercube requires many calculations.
For example, for 10 unknowns, a unitary hypercube has 1024 vertices. To reduce the number of calcu-
lations,  an  incomplete  review  of  vertices  (for  example,  5  %  —  10  %)  is  performed,  which  are  also
chosen randomly. Then each attempt is divided into two stages: 1 — random selection of a pair of
stochastic operators, 2 — random reviewing of a given set of vertices of a unitary hypercube. For each
attempt, the algorithm works with a limited number of iterations (no more than 20). For each trial, the
number of attempts, the number of obtained solutions and the corresponding iteration step number are
recorded. After receiving a positive result, a new test is performed.

І. Linear equations: ܽଵݔଵ + ܽଶݔଶ + ⋯ + ܽ௡ݔ௡ = ܽ. It is known that the solution of this equa-
tion exists under the condition that the ,ଵܽ)ܦܥܩ ܽଶ, … , ܽ௡) is a divisor of ܽ.

a) The simplest of such equations is Bezou's equation ݔܽ + ݕܾ = ݀, which has to be solved,
for example, when applying bigram encryption using Hill's method. The numerical experiment was
carried out for many equations. A positive result was obtained in all tests. For example, consider the
equation:

ݔ28 + ݕ13 = 841.
Initial solution search area ߗ = [1; 28] × [1; 28].  The set of solutions

ܴ = {(24; 13), (37; −15), (11; 41), (115; −183), (271; −519)} obtained as a result of the experi-
ment. Tabl. 1 presents the main parameters of the experiment (notation: B — number of trials; C —
total number of attempts; Сс — average number of  attempts  per  trial;  Сmax — maximum number of
attempts in one trial; Сmin — number of trials with a successful first attempt; Ic — average number of
iteration steps in all attempts; KR — is the number of different solutions).

Table 1

В С Сс Сmax Сmin Ic KR

20 42 2 8 9 9 5

All trials ended with a positive result. Note, that the solution (24; 13)  was obtained in 12 tri-
als. Accordingly, the solutions (37; −15) — in 4 trials, (11; 41) — in 2 trials. Solutions
(115; −183), (271; −519)  were obtained once each.

b) The equation of the following form is more complicated:
ଵݔ11 + ଶݔ13 + ଷݔ15 + ସݔ17 + ହݔ18 + ଺ݔ9 + ଻ݔ21 + ଼ݔ23 + ଽݔ31 + ଵ଴ݔ12 = 1503450.
For this equation, 10 trials were carried out, which consisted in the random selection of a pair

of  stochastic  operators  and for  each pair  a  random selection of  five sets  of  25 pairs  of  vertices  of  a
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10-dimensional hypercube. A positive result was obtained in all trials (50 different solutions were
obtained). Tabl. 2 presents the result of the experiment:

Table 2

В С Сс Сmax Сmin Ic KR

10 320 6 58 6 15 50

Below is one of the solutions:
ଵݔ ଶݔ ଷݔ ସݔ ହݔ ଺ݔ ଻ݔ ଼ݔ ଽݔ ଵ଴ݔ

20419 -12095 32761 35007 39571 -50040 17719 50000 -32191 25900

II. Nonlinear equations. Let's consider several well-known equations and the results of OGA
work.

a) quadratic equation
Consider a quadratic equation with ten unknowns
ଵݔ11

ଶ + ଶݔ13
ଶ + ଷݔ15

ଶ + ସݔ17
ଶ + ହݔ18

ଶ + ଺ݔ9
ଶ + ଻ݔ21

ଶ + ଼ݔ23
ଶ + ଽݔ31

ଶ + ଵ଴ݔ12
ଶ = 2013360.

            For this equation, as in the previous case, 10 trials were carried out, which consisted in the
random selection of a pair of stochastic operators and for each pair a random selection of five sets of
25 pairs of vertices of a 10-dimensional hypercube. A positive result was obtained in all trials (50 dif-
ferent solutions were obtained). Tabl. 3 presents the result of the experiment:

Table 3

В С Сс Сmax Сmin Ic KR

10 1195 24 226 47 11 50

Below is one of the solutions:
ଵݔ ଶݔ ଷݔ ସݔ ହݔ ଺ݔ ଻ݔ ଼ݔ ଽݔ ଵ଴ݔ

-81 -28 1 22 97 73 -178 70 193 29

 b) an equation of order higher than the second.
ଷݔ + ଷݕ2 + ଷݖ3 = 254

The numerical experiment for this equation consisted of 21 trials. A positive result was ob-
tained in all trials.

Area of search for solutions ߗ = [−10; 10] × [−10; 10] × [−10; 10].  It  is  easy to see,  that  in
this domain, the equation has five solutions ܴ = {(1; 5; 1), (2; 3; 4), (6; 7; −6), (4; −1; 4), (−7; −6; 7)}.
As a result of the experiment, all five solutions were obtained. Tabl. 4 presents the main parameters of
the experiment:

Table 4

В С Сс Сmax Сmin Ic KR

21 70 3 16 1 4 5

Note, that the solution (4; −1; 4) was obtained in 11 trials. Solution (2; 3; 4) — in 7 trials.
Other solutions were obtained once.

c) Let’s consider an equation with four unknowns:
ݔ
ݕ

+
ݕ
ݖ

+
ݖ
ݐ

+
ݐ
ݔ

= 1.

The numerical experiment for this equation consisted of 20 trials. A positive result was ob-
tained in all trials.
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Initial solution search area ߗ = [−10; 10] × [−10; 10] × [−10; 10] × [−10; 10]. As a result
of the experiment, fifteen different solutions were obtained, among them
(3; −9; −6; 4), (9; −6; −4; 12), (−3; 9; −6; −4) — obtained twice, and solution (4; 3; −2; 6) —
trice. Tabl. 5 presents the main results of the experiment:

Table 5

В С Сс Сmax Сmin Ic KR

20 210 11 50 1 5 15

d) exponential equations.
7௫ + 5௬ + 3௭ = 19619.

The numerical experiment for this equation consisted of 20 trials. A positive result was
obtained in all trials. Initial solution search area ߗ = [0; 20] × [0; 20] × [0; 20].  As  a  result  of  the
experiment in the search area, a solution (5; 4; 7) was obtained in all trials. Tabl. 6 presents the main
results of the experiment:

Table 6

e) 7௫5௬2௭ = 336140000
The numerical experiment for this equation consisted of 21 trials. A positive result was ob-

tained in all trials. Initial solution search area ߗ = [0; 10] × [0; 10] × [0; 10].  As a result of the expe-
riment  in  the search area,  a  solution (5; 4; 5) was obtained in all trials. Tabl. 7 presents the main re-
sults of the experiment:

Table 7

В С Сс Сmax Сmin Ic KR

21 246 12 43 1 3 1

f) Let’s consider an equation 8௫ + 17௬ = ଶ. In [9] it is stated that this equation has only fourݖ
non-negative integer solutions.

The numerical experiment for this equation consisted of 20 trials. A positive result was ob-
tained in all trials, that is, all solutions were obtained (1; 0; 3) — 18 trials, (1; 1; 5) — 17 trials,
(2; 1; 9) — 5 trials, (3; 1; 23) — 2 trials.

g) Let’s consider Catalan equation
௭ݔ − ௧ݕ = 1, where ,ݖ ݐ > 1.

As known, it has a single solution under given restrictions (3; 2; 2; 3).  (A partial  case of  the
Catalan equation is the Euler equation ଷݔ − ଶݕ = 1, which has a single solution (3,2)). If ,ݖ ݐ > 1 limit
is not considered, then the equation has infinite solutions.

The numerical experiment for this equation consisted of 21 trials without limit ,ݖ ݐ > 1. A positive
result was obtained in all trials. Initial solution search area ߗ = [0; 10] × [0; 10] × [0; 10] × [0; 10]. As
a result of the experiment, 7 times different solutions containing single values of the unknowns ,ݖ ݐ
were obtained in the search area. In the other 14 trials, a solution (3; 2; 2; 3) was  obtained.  Tabl.  8
presents the main results of the experiment:

Table 8

В С Сс Сmax Сmin Ic KR

20 52 6 7 1 3 1

В С Сс Сmax Сmin Ic KR

20 311 16 41 3 4 1
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III. Finally, let's consider the rather difficult problem of finding the roots of the Diophantine
equation with symmetric encryption, i.e. consider an example with the so-called "Diophantine diffi-
culties".

Let's consider the mathematical model of the alphabetic cryptosystem of information protec-
tion ([6]) ∑ = ,∗ܯ〉 ܳ, ,∗ܥ ,(݉)ܧ ,(݉)ܧ)ܸ|(ܿ)ܦ where ,〈�((ܿ)ܦ M* — is the set of all messages
m = m1 m2 ,. . ., mk (open text) over alphabet M; mi, i= 1 .. . k — elementary  messages; Q —  is a set
of numerical equivalents of elementary messages mi with M*; C* — is the set of all ciphergrams
c = c1 c2 …ck  over alphabet  C,  (perhaps M = Q = C); E(m) — direct conversion algorithm of mes-
sage m into c; D(c) — inverse transformation algorithm of ciphergram c into m Î M*.  We emphas-
ize, that the direct and inverse transformation in this algorithm is unambiguous. For example, let’s
consider a model of a data protection system based on finding the roots of a Diophantine equation of
the form:

ଶݔ + ଶݕ݌ = ݌   ,ଶݖ ∈ ܰ ,                                                        (1)
for which the E(m) and D(c) algorithms are built on the basis of the solutions of the equation (1). It is
known ([6]), that the class of solutions of this equation over ܰ, is as follow:

ݔ = −ܽଶ + ଶܾ݌ , ݕ = 2ܾܽ, ݖ = ܽଶ + ,ଶܾ݌ ∀ܽ, ܾ ∈ ܰ, ܾ > ܽ .
Let’s consider the encryption of some message (elementary — bigrams of letters of the Latin

alphabet, which, including spaces, has 27 characters). Numerical equivalent of bigrams mimi+1 can be
obtained using the formula ௜ݍ27 + .௜ାଵݍ

Direct conversion function ,ܽ)ܧ ܾ, (ߤ = (−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + where ,ߤ .is a secret key — ߤ
Inverse transformation function ,ܽ)ܦ ܾ, (ߤ = (ܽଶ + ଶ)ଶܾ݌ − .ߤ
Let's consider an example of the application of OGA to the given procedure for encrypting

and decrypting a message.
Let ݌ = 13, alphabet ܯ = {ܽ, ܾ, ܿ, ݀, … , ,ݕ message ,{ݖ ݉ = .࢚࢔ࢇࢎ࢖࢕࢏ࢊ
The numerical equivalents of the letters of this message are presented in the tabl. 9.

Table 9

d i o p h a n t
3 8 14 15 7 0 13 19

Let's assume for the bigram "di" the secret key is ߤ = 27ܽ + b = 27 ∙ 3 + 8 = 89, for the bi-
gram  "op"  the  secret  key  is ߤ = 27ܽ + b = 27 ∙ 14 + 15 = 393,  for  the  bigram  "ha"  – ߤ = 27ܽ +
b = 27 ∙ 7 + 0 = 189, and for the bigram “nt” – ߤ = 27ܽ + b = 27 ∙ 13 + 19 = 370.

Then the cipher of the first bigram "di" gets the value ,ܽ)ܧ ܾ, (ߤ = (3,8,89)ܧ = 707370. Si-
milarly: the bigram "op" corresponds to the number ,ܽ)ܧ ܾ, (ߤ = (14,15,89)ܧ = 9741034, bigram
"ha" corresponds to the number ,ܽ)ܧ ܾ, (ߤ = (7,0,89)ܧ = 2590, bigram "nt" corresponds to the num-
ber ,ܽ)ܧ ܾ, (ߤ = (13,19,89)ܧ = 23639414.

If the secret key is known (for example, for bigrams «nt» then decoding is quite easy ,(370=ߤ
by solving the Diophantine equation ,ܽ)ܦ ܾ, (ߤ = (ܽଶ + 13ܾଶ)ଶ = 23639414 − 370 = 23639044 =
4862ଶ , therefore ܽଶ + 13ܾଶ = 4862. The solution a=13, b=19 is quite easy to determine (also, using
OGA).

In order to find the values of ܽ, ܾ, without having a secret key, it is necessary to solve the fol-
lowing Diophantine equations:

for bigram «di» ,ܽ)ܧ ܾ, (ߤ = (−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + 27ܽ + ܾ = 707370,
bigram «op» ,ܽ)ܧ ܾ, (ߤ = (−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + 27ܽ + ܾ = 9741034,
bigram «ha» ,ܽ)ܧ ܾ, (ߤ = (−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + 27ܽ + ܾ = 2590,
bigram «nt» ,ܽ)ܧ ܾ, (ߤ = (−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + 27ܽ + ܾ = 23639414.
Solving such nonlinear Diophantine equations (given that the solution is unique) is a rather

difficult task. The OGA proposed in this work allows quickly and efficiently find solutions of these
equations.
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When applying OGA, it is necessary to find the minimum of the function ,ܽ)ܨ ܾ) =
|(−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + 27ܽ + ܾ − ,ܽ)ܧ ܾ, within area |(ߤ ߗ = [0,28] × [0,28] ∈ ܴ × ܴ.

For example, let’s consider decoding of bigram "nt", means, we need to find the solution of
the Diophantine equation (−ܽଶ + ଶ)ଶܾ݌ + (2ܾܽ)ଶ + 27ܽ + ܾ = 23639414. 20 trials were conducted
for this equation. A positive result was obtained in all trials. The solution obtained is (13; 19). Tabl. 10
presents the main results of the experiment:

Table 10

В С Сс Сmax Сmin Ic KR

20 135 7 25 1 4 1

Fig. 1 shows the sequence of iterative steps for finding a solution when using operators

෠ܲ(ߙ) = ൮

0,16 0
0 0,20

0,84 0
0 0,80

0,84 0
0 0,80

0,16 0
0 0,20

൲, ෠ܳ(ߚ) = ൮

0 0,94
0,83 0

0 0,06
0,17 0

0 0,06
0,17 0

0 0,94
0,83 0

൲,

where, at the seventh step of approximation, the point number 5 with coordinates
ହݖ = [12,65097; 19,05951] is obtained. The square, surrounding this point, has the following coor-
dinates of the vertices [12,19], [12,20], [13,20], [13,19] and in the point [13,19], the function
(13,19)ܨ = 0, as a result, an integer solution is obtained that decodes the bigram "nt".

Fig. 1.  Similarly, the solutions of the other three equations can be obtained

Conclusions
The application of the operator genetic algorithm to the solution of Diophantine equations of

different types and with different number of unknowns demonstrated the effectiveness of the proposed
version. As a result of computational experiments (with a small number of iterative steps), which were
performed for six known types of equations, positive results were obtained in 100% of the trials. It is
important to highlight the positive result of applying the operator genetic algorithm to the problem of
symmetric encryption and decryption, that is, the possibility of its use by cryptanalysts.
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	The paper presents the results of the study of the effectiveness of the operator genetic algorithm when applied to the solution of Diophantine equations.
	As is known, the solution of Diophantine equations is performed in the ring of integers. In this paper, the operator genetic algorithm, which operates in the field of real numbers, is adapted in a certain way for finding integer solutions. The research topic of this paper is of interest considering that Diophantine equations play a major role in mathematical methods of cryptology. On the other hand, the history of these equations is so rich and majestic that getting even a small result in this field is important for every mathematician. Great mathematicians of different eras were engaged in the study of Diophantine equations, and even today these studies have not lost their significance.
	У роботі приведено результати дослідження дієвості операторного генетичного алгоритму при застосуванні до розв’язання діофантових рівнянь.
	Як відомо розв’язання діофантових рівнянь виконується у кільці цілих чисел. У роботі операторний генетичний алгоритм, який діє в полі дійсних чисел, певним чином пристосовано для пошуку цілих розв’язків. Тема досліджень даної роботи представляє інтерес з огляду на те, що діофантові рівняння відіграють велику роль у математичних методах криптології. З іншого боку, історія цих рівнянь настільки багата і велична, що отримання, хоч незначного, результату в цій галузі є важливим для кожного математика. Дослідженнями діофантових рівнянь, займались великі  математики різних епох і сьогодні ці дослідження не втратили своєї значущості.
	Ключові слова: інволютивний оператор, стохастичний оператор, фітнес-функція, n-вимірний гіперкуб, бінарний код, код Грея, діофантове рівняння.



