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NUMERICAL METHOD FOR SOLVING THE STEFAN PROBLEM WITH EXPLICIT
ISOLATION OF PHASE BOUNDARIES IN A MULTIPHASE DIFFUSION SYSTEM
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I'PAHUILB PO3ALTY ®PA3 Y BATATO®A3ZHIU JUPY3IMHIN CUCTEMI

With the development of computational techniques and advancements in modeling physicochem-
ical processes, methods for increasing the accuracy and simplifying algorithms and methods for calcu-
lating mathematical models have become increasingly important.

This work is devoted to the Stefan problem, to which problems of heat transfer with a liquid-
solid phase transition and diffusion mass transfer with phase transformations in a solid (decomposition
of solid solutions, deposition of diffusion coatings) are reduced. The features of numerical modeling of
the Stefan problem in multiphase systems are considered.

The possibilities and shortcomings of existing numerical methods for solving this problem are
analyzed.

A new numerical method for solving the Stefan problem in multiphase systems is proposed. This
method is based on an implicit finite difference scheme and employs a nonlinear function approximation
of the diffusant gradient directly at the moving phase interfaces. It is shown that this method helps to
minimize the error in calculating the concentration gradient at the moving phase interfaces, where the
grid function undergoes a first-order discontinuity, significantly simplifying the numerical solution algo-
rithm for this problem.
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A comparison of the proposed algorithm with existing numerical methods was carried out on a
model problem of reactive diffusion in a solid, which is a Stefan problem in multiphase systems, using
boundary and initial conditions that allow for its analytical solution.

Keywords: Stefan problem, numerical methods, phase boundary, finite difference scheme,
explicit isolation of a moving boundary.

3 pozeumrom 00UUCIOBATLHOI MeXHIKU [ npocpecom 8 obnacmi MoOemo8anHs Qi3uxo-
XIMIUHUX npoyecie 0coOIueol axmyaibHoCmi HaOy8ames CnocoOU NiOBUUIEHHS. MOYHOCMI MA CNpo-
WJeHHs ANIOPUMMIB [ Memo0ie pO3PAXYHKY MAMEMamuyHux mooenell.

Hana poboma npucesuena npobaemi Cmeghana, 00 AKoi 3600AmMbCs 3480AHHA MENIONEPEHOCY
3 hazosum nepexodom piouna - meepoe mino i OUPY3ilH020 MACONEPEHOCY 3 Pa308uMU NEPEeMEOpPeH-
HAMU 8 MepOOMY Mili (PO3NAO MEEPOUX POZUUHIB, HAHECEHHS OUPY3IUHUX NOKpummia). Posenanymo
ocobnusocmi yucenbHo20 mooenosants 3a0adi Cmeghana 6 bazamoghaznux cucmemax.

Ilpoananizoeano moscausocmi ma HeOOMKU ICHYIOUUX YUCETbHUX MemO00i6 SUPIUEHHS Yb020
3a60aHHSL.

3anpononosaro Ho8UIl YUCeNbHUL MemOoO po3paxyHKy 3adadi Cmedarna 6 bacamogaznux ou-
Qy3itinux cucmemax, AKUL IPYHMYEMbCA HA HeABHIU pi3Huyesill cxemi. Memoo eukopucmosye anpox-
cumayio epadienma OuQy3anma HeaiHIUHoWw @YHKYIE 0e3n0cepedHbo O PYXOMUX MINCEHAZHUX
epanuys. Hagedeno, wo yeu memoo cnpuse MiniMizayii NOMUIKU po3PAXyHKY 2padieHma KOHYeHmpa-
yii' Ha pyxausux mixcghasHux epanuysax, oe cimkoga QYyHKYia 3a3Hac po3pue nepuio2o pooy. Lle icmo-
MHO 6NAUBAE HA TMOYHICMb PO3PAXYHKY PYXY MIJC (DASHUX epaHuyb, W0 MAE CYMMEGe 3HAUEHHS Npu
poss’sazanni 3a0ay Cmegana 6 bacamoghasHux cucmemax.

TopisHanHa 3anponoHO8AHO20 AN2OPUMMY 3 ICHYIOUUMU YUCETbHUMU MEMO0aMU NPOBOOULOCS
Ha MOOenbHIl 3a0aui peakyiunol oughysii 6 meepoomy mini, wo € 3adauero Cmegpana 6 bacamogphaznux
cucmemax, 3 GUKOPUCIAHHAM SPAHUYHUX | NOYAMKOBUX YMO8, SKI OONYCKAOmy ii ananimuyne pileHHs..

Haseodeno, uwo peanvruil po3noodin KkonyeHmpayii eieMeHma Hacuierts 6 ycix wapax ¢as ou-
Qysitinozo nokpumms € QyuKyicro, nodibHow erf-pyukyii 8i0 koopounam. Buacrioox yvoeo, npu 06-
YUCTIeHHI 2PAOIEHMI6 KOHYSHMPAYIi Ha PYXOMUX SPAHUYSIX PO30LLY (has, npu 6UKOPUCMAHHI TIHIUHOL
anpoxcumMayii NOXIOHUX, HA KONHCHOMY KPOYI 3d 4aCOM BUHUKAE NOMUTKA. L[ nomuika € cucmemtoro i
HeMUHYYo10 nio yac piuwenns 3aoaui Cmegana ducerbHuMu Memooamu 3 sSI8HUM SUOLIEHHAM SPAHUYL
@as. [lomunka odouucienns epadienmis HoCUMb NOCMITIHULL XapaKmep, wjo nPU3eo0Ums 00 CUCMEMHO-
20 301NbUEeHHsL WUOKOCMI PYXY SPAHUYI HA KOJHCHOMY YACOBOMY KPOYI POZPAXYHKY.

Pospobreno cnocib minimizayii nomuiku anpokcumayii epadicHma 3 UKOPUCMAHHAM Helli-
HIUHOI anpokcumyrouoi erf-ghynxuyii, axutl 0036014€ 30LIbUWUMU MOYHICMb anpoKcumayii epadienmy
00 nopsaoxy (h% t).

Pospaxyuxu noxazanu, wjo 3anponoHo8anHutl Memoo mac mounicmo, sika He nepesuwye 0,15 %.

Knwuogi cnosa: sadaua Cmegpana, yucenvui memoou, medxica po3oiny ¢as, pisnuyesa cxema,
s16HE BUOLNEHHSL PYXOMOL 2paHuyi.

Problem’s Formulation

Numerical solutions of Stefan problems have seen widespread adoption of grid-based methods
relying on implicit finite difference schemes. These schemes exhibit unconditional stability for any
temporal and spatial step sizes, allowing for the unrestricted use of kinetic coefficients.

The primary challenge in solving such problems lies in the variable domain of the function
(temperature for heat conduction, concentration for diffusion). The boundaries of this domain and their
evolution over time are not known a priori.

The crux of the problem is the movement of the phase interface. As this interface moves, a
node in the spatial grid disappears from one phase and appears in the neighboring phase. This renders
the grid function undefined at this node, as it lacks a history in the new phase at the previous time step.
Consequently, the finite difference approximation of derivatives involving this node cannot be formu-
lated without additional assumptions.

Furthermore, the velocity of the phase interface, which is determined by the grid function val-
ues near the interface, in turn influences these values. At each time step, this velocity must be con-
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sistent with the local grid function values. Any errors, whether random or systematic, in calculating
the grid function or the phase interface position will propagate and diminish the accuracy of the re-
sults.

The distinctions between various finite difference-based solution methods stem from the ap-
proaches employed to address these challenges.

Analysis of recent research and publications

Existing analytical methods for solving problems with moving phase boundaries are limited to
a very narrow class, typically involving idealized boundary conditions and one-dimensional problem
formulations.

As previously mentioned, finite difference methods have gained the most popularity in the
numerical modeling of Stefan problems. Depending on the type of numerical approximation of spatial
derivatives, difference schemes can be divided into two classes: explicit difference schemes and im-
plicit difference schemes.

Examples of using explicit difference schemes to solve heat and mass transfer problems are
the methods proposed by Crank and Nicolson in the 1960s. In these methods, unknown grid functions
Tk (or Ci for diffusion) and I'(t,+1) at the new (n+1)th time layer were included only in the approxima-
tion of time derivatives.

As shown in the works of A.A. Samarskii on the theory of difference schemes, this difference
scheme is conditionally stable. That is, it is stable only for sufficiently small time steps and imposes
rather stringent constraints on the kinetic parameters of the system due to the accumulation of errors
during the computational process. This drawback proved to be so significant that it prevented the ap-
plication of this method to solving practically important problems.

Implicit difference schemes have proven to be the most suitable in this sense. An implicit dif-
ference scheme does not accumulate a systematic error in calculations, as this difference scheme is
absolutely stable for any values of time and spatial steps. It allows the use of kinetic coefficients with-
out any restrictions, which significantly expands the scope of its application for solving specific prac-
tical problems. It is also suitable for solving problems where the grid function may have both first and
second-order discontinuities at the phase boundary.

The main problem of applying the implicit difference scheme to problems related to phase
transformations, which lead to the movement of phase boundaries, lies in the variable geometry of the
phases. When the phase boundary moves, a node of the spatial grid disappears in one of the neighbor-
ing phases, and a new node appears in the other, which previously belonged to the neighboring phase.
The uncertainty of the grid function due to the lack of history in this phase at the previous time layer
leads to the fact that the difference approximation of derivatives, which include this node of the spatial
grid, cannot be written without additional assumptions.

Several authors have proposed various ways to overcome this difficulty.

As one way to eliminate the uncertainty of the function at a newly created node, B.M. Budak
and A.A. Samarskii proposed methods related to smoothing the grid function near the moving bounda-
ry. The main idea of this group of methods was that the Stefan problem with moving phase boundaries
was reduced to a problem of one-phase non-stationary heat conduction with fixed external boundaries.
This method was used for heat conduction problems with phase transformations. Obviously, the tem-
perature distribution function obtained as a result of calculations using these methods will be continu-
ous in the entire domain of definition, at least with its first derivative. The main calculation error was
most noticeable near the phase boundary, where the temperature function should have a second-order
discontinuity. For the calculation of diffusion mass transfer problems, this method is generally unac-
ceptable, since the concentration function of the diffusant in the matrix base undergoes a first-order
discontinuity at the phase boundary.

The second group of methods is based on the fact that the time or spatial step was chosen in
such a way that the phase boundary at each subsequent time layer fell into the node of the spatial grid.
These are the so-called "boundary-following™ methods. Examples of these methods can be found in
the works of Baladi I.Y., Ayers D.L., Schoenhals R.I., and Gupta R.S., Kumar D.

It should be noted that the above methods also have a number of disadvantages. Firstly, this is
the complexity of the computational process using iterative procedures. Secondly, the method is com-
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pletely unsuitable for a multiphase system, since it is impossible to choose such a time or spatial step
at which all the moving boundaries of the multiphase system will simultaneously fall into the nodes of
the spatial grid.

Earlier, the authors proposed a method based on the use of an implicit difference scheme that
allows determining the value of the function at a newly created node of the spatial grid without chang-
ing the time step. This is the "auxiliary grid" method [1]. The method allowed solving the aforemen-
tioned problems and could be applied not only to a multiphase diffusion system but also used to solve
the problem in a multidimensional formulation.

However, all of the above numerical calculation methods, regardless of the accuracy of calcu-
lating the grid function, have a systematic error associated with determining the gradients near the
moving phase boundary, since they use linear interpolation of the grid function. Although the function
itself to the left and right of the moving phase boundary differs significantly from the linear one, espe-
cially at the initial moments of phase growth.

Formulation of the study purpose

The goal of this work is to develop a numerical method based on an implicit finite difference
scheme, specifically designed for modeling diffusion processes in multiphase systems with moving
phase boundaries.

The essence of the development lies in minimizing the error in calculating the concentration
gradient near the moving phase boundary by using a nonlinear approximating function. This, in turn,
will allow optimizing the calculation scheme, increasing its accuracy and ensuring the possibility of
applying such an algorithm to solve a wide range of problems related to the multiphase, multidimen-
sional structure of the diffusion domain and a wide range of boundary conditions on the external
boundaries of the diffusion system.

Presenting main material

To analyze the problem, let us consider a one-dimensional (planar) problem for a multiphase
diffusion system with moving phase boundaries. An example of such a system is the process of diffu-
sion saturation from the surface of a metal base matrix with a saturating element, which can form vari-
ous intermetallic phases with the base metal.

Diffusion of the saturating element into the metal base matrix in the presence of several phases

is described by a system of second-order partial differential equations based on Fick's second law:
dCq(x,t) i) dCq(x,t)
= = 52 (Da(T.c) =2) @)
here: q =1, 2, ... Q — the phase number, starting from the outer surface x = 0; x, t — the current co-
ordinate and time; C4(x,t) — concentration profile in the g-th phase; D4 (T, Co) — diffusion coeffi-
cient in the g-th phase (generally depends on the concentration of the diffusant and temperature);
T — diffusion zone temperature.
The initial distribution of the diffusant concentration in each g-th phase can be arbitrary and
given by a function:

Cq(%,0) = 9,(). )
Boundary conditions at the outer boundary and at the end of the diffusion zone (L is the length of
the diffusion zone) can be written as follows:
C1(0,0) = ¢, (1) ; ®)
Co(L,B) = 0,(V). @)
The system of equations (1)—(4) must be supplemented with boundary conditions and a mass
balance equation at all internal moving boundaries:

Cq(x%, Dlx=rq®-0 = Cq (O (5)
Cq+1(Xr t)IX:l"q(t)+0 = Cg+1(t); (6)
ac ac +1 dr,
_Dq(T: Cq)a_xq |x=Fq = _Dq+1(Ti Cq+1)a_qx+1 |X=Fq + (Cg (t) - Cg+1(t)) d_tq, (7)

here: I'q (t) — the interface between the g-th and (q+1)-th phases; Cg“(t) — concentration in the g-th
phase at the interface with the (g+1)-th phase.



38 Marematnune mogemoBanns Ne 1(52) 2025

Thus, the system of equations (1)—(7) describes the evolution of the structure and composi-
tion of a multiphase diffusion system in the presence of Q moving interphase boundaries. It should be
noted again that, in the general case, diffusion coefficients in all phases of the diffusion system may
depend both on temperature (Arrhenius-type exponential dependence, using the activation energy Qq:
Dogexp(Q¢/RT)) and on the concentration of the diffusant in each phase — Dq(T, Cq).

A more detailed description of this mathematical model can be found in [1].

In the Stefan diffusion problem, the position of the moving phase boundary is determined
from the mass balance equation (7) for the diffusing element at this boundary I'q. Since the fluxes of
the diffusing element are determined by the gradients of its concentration, the accuracy of determining
concentrations near the moving boundary and the accuracy of the finite-difference approximation of
the first derivative affect the accuracy of determining the position of the interphase boundary I'q.

The traditional finite difference approximation of the diffusion equation in regular nodes of a
uniform grid for one-, two-, and three-dimensional problems is carried out with an accuracy of order
(h?,7) [2], where h — is the spatial grid step and T — is the time step. In the case of explicit phase
boundary tracking [3,4], there is always a boundary node ip’, the distance & from which to the moving
boundary is less than the spatial grid step & < h (Fig. 1). Therefore, the approximation of the diffusion
equation at this node is carried out on a non-uniform grid, which leads to a decrease in accuracy to the
order of (h,7).

Thus, the numerical solution of the diffusion equation within a single phase can give the larg-
est errors in the values of the diffusant element concentration near the moving boundary, which will
subsequently affect the accuracy of determining the coordinate I'q Of this boundary.

In most works devoted to the numerical modeling of reactive diffusion with explicit phase
boundary tracking, the finite difference approximation of gradients in the balance equation (7) at the
moving boundary is carried out using a two-point scheme, which includes the boundary node and the
phase boundary itself [5,6,7]. The accuracy of such an approximation of the first derivative is found to
be of the order of (h,t), which is consistent with the accuracy of the finite difference approximation of

the diffusion equation at the boundary node.

C(x,t) This work is dedicated to investigating
possibilities for improving the accuracy of de-
termining the position of the phase boundary
without significantly complicating the calculation
-4 algorithm or reducing its execution speed.

\ Systematic errors in gradient approx-
[ I N imation and methods for their elimination

wfx' The use of an implicit scheme for calcu-

lating the concentration of the diffusing element

o +1
Cﬂ'

(o7 S E— within a single phase suppresses any random
o, / errors that may arise during the calculation pro-
" e, cess and should not lead to the accumulation of

errors at the boundary node. It is known that the

|
|
|
|
} actual distribution of the diffusing element's con-
|

|

5 centration within a single phase is a concave

= continuous function of coordinates. Therefore,

0 - —— — «  the two-point scheme approximation of the first
ip ip \ip +1 ip'+2 derivative always gives a slightly overestimated

o value of the gradient (Fig. 1) in the phase with a

et higher concentration of the diffusing element and

slightly underestimates the gradient in the phase
with a lower concentration of the diffusing
element.

Such systematic errors in the calculation
of gradients lead (Fig. 1) to an increase in the

Fig. 1. Emergence of a systematic error in
gradient calculation: aq , aq+1 — analytical values
of tangent angles to the function; o'q , a'q:1 —
tangent angles calculated using finite difference
approximation of gradients



Posznmin 1. MaremaTudHe MOIETIOBaHHS B IPUPOJHUINX HayKaxX Ta iHPOpMaIliiHI TEXHOJIOT 11 39

velocity Vr, of the moving interface Vr, = % ; (Tq is the coordinate of the interphase boundary).

Let us demonstrate this.

Fig. 1 shows a schematic diagram of the concentration dependence of the diffusing element a
in the phases around the moving interphase boundary. Here, aqand aq+1 — are the analytical values of
the tangent angles at the interphase boundary at points x=I'¢—0 and x= x=I'¢+0, respectively. And o'q,
o'q+1 — are the values of the tangent angles of the segments at the interphase boundary, which are used
in the process of finite-difference approximation of gradients.

It is evident that the following inequalities will always hold: a'q> oq and o'q+1< ag+1. Conse-
quently, the finite difference approximation results in a diffusion flux of element A towards the phase
interface that is always greater than the actual flux. Similarly, the flux of element A away from the
phase interface is always less than the actual flux, leading to an overestimation of the phase boundary
movement velocity.

As the actual concentration distribution of the diffusing element approaches a linear profile,
the errors in gradient calculation decrease, and the velocity of the phase boundary movement converg-
es to the analytical value. The systematic error in gradient approximation at the phase interface can be
reduced in two ways:

1) by using nonlinear approximating functions;

2) by increasing the accuracy of gradient approximation through a finer spatial grid.

Increasing the spatial grid points always leads to a significant increase in computational load
and, consequently, an increase in computation time.

Therefore, we will first consider the use of nonlinear approximating functions.

Minimization of gradient approximation error using a nonlinear approximating function

All existing analytical solutions to the diffusion equation demonstrate that the concentration
distribution of the diffusing element is described by erf or erfc - functions, as exemplified in [2]:

C(x,t) = Cyerfc (2\/_) Co—Coerf (2 Dqt>'

Bg-1

er erf

Calxt) = €371 — (I = ¢I*Y o) EF)

erf(\/D_) erf(\/_)
Typically, at any point in time, these functions can be represented by: y(x)=m-a erf(v'b -x). In

this equation, m, a, and b — represent constants.

Let us find the derivative of this function at the point x = I'q-0, that is, from the left side of the

boundary I'g.
We have:

o= SR e (hux?), ©
here, the subscript L stands for 'left', meaning from the left side of the boundary T

Considering the Lagrange's mean value theorem and the known concentration values Cj,”l of
the diffusing element (Fig. 1) at the moving boundary I'q and the nearest grid nodes ip and ip’, let us
write a two-point finite difference approximation of the gradients on the segments (ip’ - I'q) and (ip -
ip’) to determine the unknown constants a, and by

Cq+1_Ci , 2

=g, B exp (<byxd); ©)
Cip—Cip _ . 2\/k0_. _ 2

P a N exp (—byx5), (10)

here, x; and x, — are some points located inside the intervals I'; — x;,» and x;;,» — x;;,, respectively.
Considering that the concentration distribution function within a single phase is a monotonic
smooth function, it can be assumed that the points x; and X, are approximately in the middle of the
corresponding intervals and the following relations hold:
Fq+xipr o = X'ipr-l-xip
2

% = (11)

Substituting (11) into (9) and (10), we obtain:
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eIt —cyy 2./b +X i
A, ._L. exp (—bL(M)Z);
Tq=xip'

Cip—Cip 21/ Xip' +xlp
——=a - ex b

Xip—ip L' \/— p (—=b,(—2)?).

By solving the resulting system of equations with respect to a_ and by, we arrive at the follow-
ing expressions:
(CZ+1—Clp)(x ~Xip)
4-1n
(cipr—clp) g2
(x,-pr+xip)2—(1"q+xipr)2
ct-cpy vm Tg+Xip\2
e e A S a4
W == e OXP (bL( ) ) (13)
Now, using equation (8) and taking into account equations (12) and (13), and considering

X = I'q, we will calculate the first derivative at the phase boundary I
After some simple transformations, we obtain:

ay c-cyy Tq+xip\? 2)
o= =S exp (b (( ) -r.)) (14)

Expression (14) represents the value of the linear approximation of the first derivative to the
left of the phase interface, multiplied by an exponential factor, whose exponent is always negative.

Thus, the overestimation of the first derivative value when it is approximated linearly will be
compensated by multiplication by an exponential factor, whose value is always less than unity, and the
overestimation of the first derivative will decrease, approaching the true value.
By performing similar reasoning, let us find the derivative of the function y(x)=mg-ar erf(\/le) at
the point x = I'q+0, that is, from the right side of the boundary I'q. Here, the subscript R means: on
right, — "from the right side of the boundary I'q".

Finally, we obtain a system of equations for ar and br :

q - ’ . ’ - ’
41n ((Cqﬂ Cip +1) (xip +2 xip +1))

b, = ; (12)

b = (Cip'+2_Cip'+1)'(rq_xip'+1)
- , . )2 Y
Cip g2t ¥y ) ~Ugtxy )
q _ , 2
_ Cq+1 Cip +1 \/_ Fq+xlp +1
aR =—— : -exp| bg — ) )
4 %ip'+1 br

Therefore, we finally arrive at:

q 2
oy CQ+1_Cip'+1 rq+xip'+1 2
6_] = I"——/ *exp bR T - Fq . (15)
X1rg+o 4 %ip'+1

Expression (15) represents the value of the linear approximation of the first derivative to the
right of the phase interface, multiplied by an exponential factor, whose exponent is always positive.

Since in this case Iy < Kip'41 the exponential factor will be greater than unity, and the un-
derestimated value of the flrst derivative will increase, approaching the true value.

Comparison of the accuracy of the proposed method for reducing the systematic error of
gradient approximation

When recording the system of equations (1)—(7) using a finite difference scheme, it is neces-
sary to use dimensionless quantities normalized to the h -spatial grid step and the T -time grid step:

spatial variable — % (determines the number of nodes of the spatial grid);

time variable — % (determines the number of time steps);

. . . . .. Dgt . . .. .
dimensionless diffusion coefficient — h—qz (dimensionless coefficient, normalized by the spa-

tial step and time step).

This is due to the fact that when constructing a finite difference scheme, certain conditions
must be met for building a spatial grid and determining the time step. In order to obtain a more or less
accurate calculation, it is necessary to use at least several hundred spatial steps, and the time step
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should be chosen so that the moving phase boundary does not cross more than one spatial grid node in
one time step.

This is because constructing a finite difference scheme requires satisfying specific conditions
for spatial grid and time step selection. To ensure reasonable accuracy, at least several hundred spatial
steps are necessary. Moreover, the time step should be small enough to prevent the moving phase
boundary from crossing more than one grid node per time step.

Consequently, the following dimensionless parameters were chosen for the model problem:

Constant concentration on the outer surface — C9(0,t) = 30 %;

Concentration at the moving boundary in the 1st phase — C1 = 20 %;

Concentration at the moving boundary in the 2nd phase — C{ = 10 %;

Concentration at the inner surface of the diffusion zone — Cx(L,t) = 0;.

Dimensionless diffusion coefficient in the first phase (%) -D1=23;

Dimensionless diffusion coefficient in the second phase (%) - D2=0,992.

According to the definition of these dimensionless quantities, in the following, we will count
time in time steps and distance in spatial steps.

The formulation of the Stefan problem in this form allows for an analytical solution. Accord-
ing to the analytical solution [1] of the problem (1)—(7), a parameter can be obtained that determines
the position of the moving boundary I" = 28+t f# = const (in this example, the calculated coefficient is
p=0.61477).

In order to avoid mathematical difficulties at the initial time t=0 in numerical calculations (in
numerical modeling it is impossible to set zero phase thicknesses at the initial moment, in contrast to
the analytical solution), the moment t = 25 steps was chosen as the initial moment, for which the posi-
tion of the phase boundary and the concentration distribution in the phases were calculated using ana-
lytical formulas. These data provided the initial values for the phase thicknesses and concentration
distribution for the grid function. Further numerical modeling was carried out using this distribution as
the initial condition.

The most vivid indicator of the accuracy of the calculations is the dynamics of the phase
boundary movement. The simulation results are presented in Tabl. 1.

Table 1. Dependence of the phase boundary coordinate on the time of the diffusion experiment

Time Analytical Difference from
' solution T4, Calculated values ; . Relative error,
number of . analytical solution
. number of spatial of I'; %
time steps ATl
steps
27 6,38887725 6,39368705 0,00481 0,0753
29 6,62127554 6,622018989 0,000743 0,0112
31 6,84578899 6,844573 -0,00122 -0,0178
35 7,27405674 7,283902621 0,009846 0,1354
39 7,67847484 7,677959859 -0,00051 -0,0066
45 8,24800506 8,254162705 0,006158 0,0747
53 8,95118631 8,947650326 -0,00354 -0,0395
65 9,91286839 9,910290604 -0,00258 -0,0260
81 11,06586 11,06334033 -0,00252 -0,0228
105 12,5990358 12,59972307 0,000687 0,0055
137 14,3913967 14,39405031 0,002654 0,0184
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Continue of the table 1

183 16,6329088 16,63614174 0,003233 0,0194
247 19,3237379 19,32880294 0,005065 0,0262
337 22,571354 22,57716654 0,005813 0,0258
463 26,4565468 26,46333595 0,006789 0,0257
639 31,0808646 31,08870524 0,007841 0,0252
885 36,5775234 36,58525803 0,007735 0,0211
1229 43,1041022 43,11216 0,008057 0,0187
1711 50,8589824 50,86675 0,007769 0,0153
2387 60,0715546 60,07925 0,007696 0,0128

As can be seen from Tabl. 1, the results of numerical calculations of I'1, the coordinate of the
phase boundary, differ very little from the analytical solution GA. And the relative error does not exceed
emax = 0,14 % compared to the analytical solution. On any graph, they will hardly be distinguishable.

Therefore, to analyze the change in the error during calculations, Fig. 2 shows the graphs of
the time dependence of the difference between the calculated and analytical values of the phase
boundary coordinate (AT'1=T1—T4).
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Fig. 2. Variation in absolute error of interface boundary position calculation using nonlinear
gradient interpolation with erf-functions compared to the analytical solution.

The absolute error is negligible. For example, for time t = 463 steps, it is AI'; = 0.006789
(Tabl. 1, Fig. 2). And the relative error does not exceed 0.026 %.

However, the calculation using nonlinear interpolation with erf-functions requires additional
calculations at each time step, although it is more accurate compared to other methods proposed earlier.

At the initial moment, the absolute error AI'l changes sign several times (Fig. 2), in contrast to
the behavior of the error AI" when using ordinary two-point schemes for calculating gradients [1]. This
indicates that the employed scheme satisfies the conditions of an absolutely stable scheme and the
accuracy of the proposed gradient calculation method is of the same order as the accuracy of the con-
centration field calculations, namely (h? 7).
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Over time, the absolute error increases slightly. It reaches a maximum (Tabl. 1) at approxi-
mately ~ 1000 time steps and then decreases monotonically. This confirms the elimination of the sys-
tematic error in the calculation of concentration gradients at the moving phase boundary, as the con-
centration gradient becomes significantly smoother over time.

The elimination of this accumulating systematic error, which is significant at the beginning of
the calculation when the gradients are large, significantly improves the accuracy of the Stefan problem
solution. Specifically, we see that the relative error at the time corresponding to 2387 steps is only
0,013 %. In other words, minimizing the systematic error that accumulates over time when solving the
Stefan problem using numerical methods with explicit phase boundary tracking improves the compu-

tational accuracy by a factor of n = 8"‘% = 10,6.

Conclusions

1. Due to the fact that the actual concentration distribution of the saturating element in all
phases of the diffusion coating is a function similar to the erf-function, when calculating concentration
gradients at the moving phase boundaries at each time step, an error occurs. This error is systematic
and inevitable when solving the Stefan problem using numerical methods with explicit phase bounda-
ry tracking. Moreover, these systematic errors in gradient calculation lead to an increase in the veloci-
ty of the boundary movement.

2. A method for minimizing the gradient approximation error using nonlinear approximation
with the erf-function has been developed, which allows increasing the accuracy of the gradient ap-
proximation to the order of (h? 7).

3. Calculations have shown that the proposed method has an accuracy of no more than 0,15 %.

4. The elimination of the systematic error significantly increases the accuracy of the Stefan
problem solution: the relative error in the calculation of the moving phase boundary coordinate at the
end is emax = 0,0128 %, which is 10,6 times less than in the calculation performed without minimizing
the gradient approximation error.
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