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APPLICATION OF NEURAL NETWORKS IN THE TASK OF SPEECH RECOGNITION
3ACTOCYBAHHS HEMPOHHUX MEPEXK B 3AJIAYI PO3II3HABAHHS MOBJIEHHS

The article is dedicated to describing a generalized neural network approach to solving the
scientific and practical problem of speech recognition. The algorithm presented in the article for uti-
lizing neural networks to transform an input audio signal into recognized text outlines the key steps in
modeling and implementing a speech neural network model. The study provides a mathematical de-
scription and architectural overview of the three most effective types of neural networks that can be
used in the development of automatic speech recognition systems: recurrent neural networks, convolu-
tional neural networks, and transformer-based networks. For each of these neural network types, the
article presents an implementation workflow for speech recognition tasks, along with graphical repre-
sentations of their architectures. Additionally, the advantages and disadvantages of each neural net-
work type are analyzed, and a comparative evaluation of expected recognition results is provided,
including accuracy, computational complexity, memory requirements, and key performance metrics
such as Word Error Rate, Character Error Rate, and BLEU score.

Keywords: speech recognition; neural network; recurrent neural network; convolution neural
network; transformer-based neural network.

Cmammio npucesIiyeHo onucy y3acaibHeH020 HeUpoMepeicedoco nioxody 00 po36 sI3aHHs 3a-
80aHHA pO3NIZHABAHHA MoeleHHA. Haeedenuu y cmammi ancopumm GUKOPUCMAHHA HEUPOHHUX MEPEHC
01 nepemBOPEeHHsL 8XIOH020 AYOIOCUSHATLY HA PO3NIZHAHUL MEKCM ONUCYE OCHOBHI KPOKU MOOCTIO8AHHS
ma npoepamHoi peanizayii MoHOI Helipomepedcedoi Modeni, maxi k. 30ip oanux, ix nonepeous oopooKa,
BUOIIEHHsL O3HAK, BUOIP MA HABYAHHA MOOe, 0eKOOYBAHHS MA BNPOBAONCEHHS Y NPAKMUYHI CUCTEMU.

Y pobomi npedcmasneno mamemamuunuii Onuc ma apximeKmypu mpvox Hauobibw epexmus-
HUX MUNI8 HEUPOHHUX Mepedic, AKI MOJCYMb OYmu SUKOPUCMAHHI Ni0 4ac po3poOKU cUcCmemu agmo-
MAMUYHO20 PO3NIZHABAHHI MOBIEHHS: PEKYPEeHMHI | 320PpMKOBI HeUPOHHI Mepedcl ma Mepexci muny
«mpaucopmepy, 011 AKUX NPeOCmasieHo ONUC KPOKIG IX 8NPOBAONCEHHA 8 3a0ayi pO3Ni3HABAHHS
MOBIEHHS 13 MAMeMamuutow gopmanizayiero yboeo onucy. Haseoeni epaghiuni npedcmasnenns ap-
XimeKmyp HetpOHHUX Mepedc 0aiomsb 3MO2)Y HAOYHO OYIHUMU CKIAAOHICMb IX CIMPYKMYpU ma iiocm-
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Poznin 1. MaremaTnaHe MOIEITIOBaHHS B MPUPOJTHUINX HAayKaxX Ta iHPOpMaIiiHi TEXHOJIOTii 25

PYIOMb cXeMy nepemeopents 6XiOHoi NOCIi006HOCMI 00 pe3yabmyiouoi 3a 00NOMO2010 CReYUDIuHUX
NPOCPaAMHUX MEXAHIZMIE.

s kodcHOo20 muny HelpOHHUX MepediCc BUHAYEHO nepedasu i HeOOoiKU IX GUKOPUCAHHA Md
HABEOEHO NOPIGHANbHA XAPAKMEPUCTIUKA OHIKYBAHUX Pe3YIbMmamie pOo3NiZHAGAHHS MOGNIEHHA: MOY-
HiCmMb, 0OYUCTIOBAILHA CKIAOHICMb, umoza nam smi, kpumepii WER, CER, BLEU. Busnauero, wo
PEeKYPEeHmHi HeUPOHHI MepexCi 8UMAa2aroms MeHule 00UUCTIOBAIbLHUX pecypCis8, wo pobums ix onmu-
MATbHUMU 0718 3ACMOCYB8AHHA HA HEBeIUKUX HAOOpax OaHuX ma y 3a0ayax 3 HU3bKOK CKIAOHICHIO.
3e0pmxo6i HeupoHHi Mepednci € NOMYAHCHUM THCINPYMEHMOM Olisl GUMALY8AHHS AKYCIUYHUX O3HAK,
3abe3neyyrouu 8UCOKY WEUOKICb 00UUCIEHb 3A805AKU Napanenizayii, 00HaK OJid 8paxy8aHHs 4aco8oi
OuHaMiKu ix 3a368uyati KOMOIHYIOMb 3 IHUWUMU HEUPOHHUMU Mepexcamu. Y ceoto uepey, mpancghopme-
PHI apximexmypu 0eMOHCMPYIOmMb HAUGUWY MOYHICINb PO3NI3ZHABAHHS MOGLEHHS 3A80AKY 30aMHOCTI
ehexmuero 00pobsMU 00821 NOCHIOOBHOCMI, NPOMe GOHU MAOMb GUCOKY OOYUCTIOBATLHY CKAAO-
HiCMb Ma 8enuKi 6UMo2u 00 pecypcie i po3mipy 6XiOHOi NOCAIO08HOCHIL.

Tlpeocmasneni pezyibmamu QOCIOHNCEHHS MONCYMb OYyMu 3aCMOCO8ari 0/ 0OIPYHMOBAHO20
8UOOPY MUNY HeUPOHHOT Mepedici nio yac peanizayii cucmemu agMOMAMUYHO20 PO3NIZHABAHHA MOGLEHHSL.

Knrouoei cnoea: pos3nizHasauHs MOGeHHs;, HEUPOHHA Mepedxca; PeKYPeHmHI HeUpOoHHI Mepe-
JHCI; 320PMKOBI HeUPOHHI Mepedic; HeUPOHHI Mepexci muny «mpaucgopmepy.

Problem’s formulation

Automatic speech recognition (ASR) is a relevant scientific and practical challenge within the
field of natural language processing. The ultimate goal of solving this problem is to convert an input
acoustic signal into text. Implementing ASR is a complex task, as it heavily depends on the quality of
the acoustic signal, which is particularly critical for real-time speech recognition systems. The primary
requirements for ASR systems include recognition accuracy, robustness, processing speed, and scala-
bility. These requirements shape the system’s key characteristics, such as noise resistance, minimal
speaker dependency, low latency between speech input and output, minimal recognition errors, multi-
lingual support, and adaptability to new words.

The methods used for ASR have been modernized in response to the increasing demands of
the systems that implement them [1]. Template matching methods were the first approaches applied to
ASR. These methods analyzed the acoustic characteristics of the input signal and relied on a prede-
fined set of templates for each word or phoneme. Early ASR systems based on template matching
methods were inefficient and had a significant drawback — their vocabulary was limited to a prede-
fined set of words available for recognition.

The next approach applied to ASR involved statistical methods and stochastic models, particu-
larly hidden Markov models (HMM). The primary advantage of this method over its predecessor was
the ability to operate with an unlimited vocabulary. This was achieved through the introduction of the
phoneme-based speech recognition concept and the computation of word occurrence probabilities
within a given context.

The development of neural networks (NN) and artificial intelligence (Al) has also significant-
ly impacted ASR tasks. The primary motivation for applying NNs and deep learning was to enhance
recognition accuracy, efficiently process audio signals, model acoustic features, and recognize contin-
uous speech [2]. End-to-end models based on NNs learn directly from audio files without relying on
separate models. Additionally, transformer-based NNs enable speech analysis in complex linguistic
contexts without requiring manual annotation in datasets.

The NN approach introduces new opportunities for implementing ASR systems, ensuring effi-
cient and accurate recognition, which is widely applied in voice assistants, transcription systems, and
interactive human-machine interfaces [3]. Despite significant advancements in speech recognition
quality, this task remains a subject of ongoing research aimed at developing even more effective algo-
rithms, models, methods, and architectures.

Analysis of recent research and publications

The application of NNs in ASR represents a modern, efficient, and highly accurate approach
that has significantly improved recognition accuracy and the ability to process large volumes of data.
Despite substantial progress in this field, ASR remains a challenging task due to linguistic diversity,
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accents, background noise, and the stringent requirements for both speed and accuracy. Current re-
search in this area focuses on optimizing NNs architectures, enhancing their performance — particu-
larly for real-time speech recognition and low-resource languages — and reducing model size, which
is critical for embedded and mobile ASR systems.

The analysis of recent scientific studies has shown that the most common types of NNs used
for speech recognition are recurrent neural networks (RNN), convolutional neural networks (CNN),
and transformer-based NNs. Numerous research papers are dedicated to the development of effective
NN approaches for ASR.

Studies [3—5] describe methods and ideas for improving recognition accuracy in RNNSs,
while studies [6—7] focus on the use of BILSTM for sequence annotation and the attention mecha-
nism in interactive speech recognition.

The authors of studies [8—10] have dedicated their research to developing efficient approach-
es for applying NNs to the recognition of specific languages, particularly low-resource languages, with
an emphasis on continuous speech recognition.

Studies [11—12] present novel approaches to using CNNs for speech recognition. In particu-
lar, the authors of study [11] propose using video sequences of speech, rather than audio input, by
extracting information from lip movements.

The application of transformer-based NNs is described in studies [13—15], where the authors
utilize the classical transformer architecture and modify it to enhance recognition accuracy or enable
ASR under specific conditions. In study [13], the authors integrate a CNN into the transformer model
to improve recognition quality by leveraging the CNN’s strong feature extraction capabilities. Study
[14] proposes adapting a transformer-based model for self-supervised speech recognition using unla-
beled audio data. Meanwhile, study [15] explores the use of transformer-based models for language
identification, speech-to-text conversion, and real-time subtitle generation.

Research in the field of NNs for speech recognition continues to evolve, revealing untapped
potential for refining existing NN approaches and developing new models that can enhance the quality
of ASR systems, bringing them closer to human-like speech processing.

Formulation of the study purpose

The objective of this paper is to present a generalized approach to the application of NNs in
speech recognition tasks. To achieve this goal, the following research tasks were identified and im-
plemented: analysis of the architecture and mathematical description of NNs, including RNN, CNN,
and Transformers; development of algorithms for applying the selected NN models to speech recogni-
tion tasks; formation of a comparative analysis of the NNs and conclusions regarding the justified
selection of an optimal NN architecture for speech recognition.

Presenting main materials

In speech recognition tasks, NNs of various architectures can be applied. However, a general-
ized algorithm for their use can be formulated, describing the main stages:

1. Data Collection. First, a large dataset of audio recordings must be prepared. For most NNs,
it is necessary to provide a corresponding textual annotation for each audio recording.

2. Preprocessing. The entire input dataset must undergo signal preprocessing, including noise
removal, volume normalization, and overall sound quality enhancement [16]. To make the input audio
suitable for NN processing, it should be converted into a spectrogram or a set of Mel-Frequency
Cepstral Coefficients (MFCC) [17].

3. Feature Extraction. The input signal is analyzed and transformed into a time-frequency rep-
resentation, for example, using Fourier transforms or wavelet transformations.

4. Model Selection. The choice of NN architecture largely depends on the requirements of the
speech recognition system and the expected output format, which ultimately affects both performance
and recognition accuracy.

5. Model Training. The designed NN must be trained to recognize speech using a dataset con-
taining paired examples of audio signals and their corresponding textual transcriptions. Performance
analysis and evaluation of the obtained results help select the most optimal network parameters while
preventing overfitting.

6. Decoding. The output of the NN consists of probability distributions that need to be
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decoded and converted into structured text sequences. To enhance the final speech recognition output,
statistical models or additional NN language models are often applied.

7. Model Evaluation. The trained NN undergoes testing to assess its effectiveness and accuracy.

8. Deployment. The final step in applying NNs for speech recognition involves integrating the
trained model into the ARS system and deploying it on designated resources, such as cloud platforms
or resource-constrained edge devices. The performance of the deployed model can be optimized using
hardware acceleration, parallelization, model pruning, or quantization techniques.

All NNs architectures ultimately transform an input audio signal into a textual sequence repre-
sented as a set of characters, phonemes, or tokens. However, each type of NN is characterized by a
specific architecture and has distinct requirements for the input dataset [3]. RNNs ensure sequential
processing of speech fragments [5, 18], CNNs are used when the input signal is provided in the form
of spectrograms [11, 12], and for complex speech recognition tasks, transformer-based NNs are the
most suitable [13—15].

RNNSs are a type of NNs designed to process sequential speech fragments [2, 16]. A schematic
representation of the generalized RNN architecture is shown in Fig. 1.
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Fig. 1. Generalized architecture of RNNs

Then, the algorithm for applying RNNSs in the context of speech recognition task consists of
the following steps:

1. Creating the input sequence X=(x1, X2,...,Xn) Of feature vectors, such as those represented us-
ing MFCC or Mel-spectrograms, where n is the total length of the input sequence.

2. Processing the speech signal at each time step while preserving the context of previous
states. The calculation of the weight coefficients in the RNN takes into account the hidden states at
each time step t, which is determined as:

h = f (W, +W,x +b,), 1
where h; — is the hidden state vector, W, — is the weight matrix for the previous state, Wy — is the
weight matrix for the current input vector, b, — is the bias vector, f — is the activation function, typi-
cally tanh or ReLU.

3. Transforming hidden states into probabilities of recognized symbols or phonemes in the
Softmax layer, which is mathematically expressed as:

Vi = softmax(vvyht +by ) (2)

where W, — is the weight matrix for the output, by — is the bias vector.

4. Decoding the output sequence of symbols or words Y = (y1, Y2,...,ym) into the final text using
various algorithms, where yneV — represents a symbol or word from the vocabulary V. For this pur-
pose, techniques such as Greedy Decoding (selecting symbols with the highest probability), Beam
Search Decoding (computing the best possible text variants), or Connectionist Temporal Classification
(enabling speech recognition without precise alignment of audio and text) are commonly used.

5. Post-processing and text normalization to remove repeated symbols, correct errors, and in-
troduce punctuation marks for structuring the final sentences.

The most widely used and modern RNN models suitable for ASR are Long Short-Term
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Memory (LSTM) and Bidirectional LSTM (BIiLSTM). LSTM and BiLSTM are types of RNNs with
long-term memory, which effectively process sequential data and long-range dependencies, providing
moderate expected accuracy [5—7]. However, they have several significant limitations:

— high computational complexity due to sequential processing;
limited parallelization capabilities;

— information loss in long sequences, which is partially mitigated in BiLSTM;
complex training process.

CNNs are traditionally used for image analysis but are also effectively applied to speech
recognition, particularly when processing time-frequency representations of audio signals (e.g., spec-
trograms or MFCCs). CNNs excel at extracting local features, improving robustness to noise and
speech variability. The primary concept of using CNNs in speech recognition is leveraging convolu-
tional layers to extract high-level features from the input audio signal [8]. A schematic representation
of the generalized CNN architecture is shown in Fig. 2.
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Fig. 2. Generalized architecture of CNNs

The generalized algorithm for applying CNNs to speech recognition consists of the following steps:
1. Formation of the input dataset X, typically represented as an acoustic feature matrix TxF,
where T — is the number of time frames, and F— is the number of acoustic features.
2. Performing the core CNN operation — convolution, which is applied using a set of filters.
Mathematically, the convolution operation in CNN can be described as:
C M N
Zijk =22 > Wiemn Xejrm,j+n ok, €))
c=1m=Im=1
where Zijx — is the value of the output tensor after convolution, Wi cmn — is the convolution kernel
for the k-th filter of size MxN, Xci+mj+n — is the local patch of the input signal, and by — is the bias of
the k-th filtr.
3. Applying the non-linear activation function ReLU:
Ak = max(o’zi,j,k)' 4)
4. Applying the pooling operation at the pooling layers, which reduces the dimensionality of
the features and enhances resistance to variations in the input data. Mathematically, the pooling opera-
tion is described as:
Pi,j,k = max Ai+m,j+n,k' 5)
(m,n)eR
where R is the pooling window.
5. Processing the feature vector in the fully connected layer for classification of speech features.
6. Applying the Softmax function to determine the probabilities of characters, words, or phonemes.
7. Decoding the resulting text, for example, using Beam Search — a heuristic search algorithm
for finding the most probable sequence or Viterbi decoding — a dynamic programming algorithm for
finding the most probable sequence in HMM.
8. Error correction and formatting the resulting sequence of tokens Y = (y1, Yz,...,Ym).
Despite their ability to reduce data dimensionality, high robustness to noise, and fast training,
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CNNs have certain drawbacks when applied to speech recognition, namely:

— the inability to preserve the context of previous steps, which is critically important for speech;

— the need for a large amount of training data;

— the reduction in detail in the input spectrograms of the audio signal due to the use of pool-
ing layers, leading to the loss of valuable information;

— poor adaptability to processing audio signals of variable length.

Transformers are the modern standard in ASR, demonstrating high accuracy and efficiency
[2]. Showing significantly higher accuracy, they have replaced RNNs and CNNs in many modern
ASR systems, bringing recognition quality closer to human-level accuracy. The main advantages of
transformers are their ability to account for long-term context, high robustness to noise and speaker-
specific pronunciation, and support for multilingual models. The use of transformer-based models
(Whisper, Wav2Vec2, Conformer) has opened new possibilities for voice assistants, automatic subti-
tles, and other applications. A schematic of the generalized architecture of transformer-based NNs is
shown in Fig. 3.
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Fig. 3. Generalized architecture of transformer-based NN

Assuming that X = (x1, X2,...,xn) is the input feature sequence of the audio signal, which is
transformed into the output token sequence Y = (yi, Y2,...,ym), the generalized algorithm for applying
transformers to solve the speech recognition task consists of the following main steps:

1. Feature extraction of the input audio signal and positional encoding (PE) of each element in
the input sequence:

. 0s 0s
PE( pos,2i) =Sin p a y PE( pos, 2i-+1) =CO0 p a ’ (6)
10000¢ 10000¢
where pos — is the position of each element in the sequence, and i — is the index of the component.

2. Calculation of Self-attention. For each element in the input sequence, the relationship with
other elements is computed. The attention matrix is computed as:

A= softmax(QKT }/ , (7)

Jd

where Q=XWq, K= XWk, V= XWy — are the query, key, and value matrices, respectively, d — is the
feature dimensionality, and Wq , Wk, Wy — are the weight matrices.
3. Computation through the feed-forward network:
FEN(x) = Re LU (XW, + b, )W, +D, . (8)
4. Decoding the output sequence using CTC-loss, Beam Search, or Greedy Decoding.
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5. Formation of the resulting output text.

The most commonly used transformer-based NNs applied to ASR are Wav2Vec2 (a NN that
implements the basic functionality of the transformer attention mechanism), Whisper (a NN used not
only for ASR but also for audio translation between languages), and Conformer (a hybrid NN that
combines CNN and transformer mechanisms to improve recognition accuracy). The ability of trans-
former-based NNs to capture complex linguistic dependencies makes this type of NN effective in
speech processing and recognition tasks. The main drawbacks of transformers are:

— high computational complexity;

— high memory requirements;

— the need for a large annotated input data corpus;

— delays in processing due to the complexity of computations.

To evaluate the effectiveness of speech recognition using NNs, metrics such as Word Error
Rate (WER), Character Error Rate (CER), and Bilingual Evaluation Understudy (BLEU) Score are
commonly used [2, 4]. WER is the primary metric that determines the percentage of incorrect words in
the recognized text and is calculated as:

WER:—S+5+I, )
where S — is the number of substituted words, D — is the number of deleted words, | — is the num-
ber of inserted words, N — is the total number of words in the reference text.

CER is a metric for evaluating the quality of speech recognition systems, determining the pro-
portion of errors at the character level. It is calculated using the same formula as WER but at the char-
acter level instead of words. CER measures the extent to which a speech recognition system distorts
the text at the character level. It is often used in conjunction with WER.

If WER and CER determine the level of distortion in the obtained results relative to the refer-
ence, the BLEU metric is used to evaluate the quality of automatic machine translation by comparing
the translated text with one or more reference (human) translations. BLEU measures the accuracy of n-
gram matches between the generated text and the reference translation. It is defined as:

N
BLEU = BP-exp(an log an,

n=1

(11)

where p, — presents the n-gram precision (the number of matched n-grams divided by the total num-
ber of n-grams in the generated text), w, — are the weighting coefficients, BP is the brevity penalty
applied for excessively short translations.

BLEU evaluates the quality of automatic translation by measuring the match of phrases of
varying lengths with the reference translation.

Tabl. 1 presents the results of the speech recognition performance analysis for RNNs, CNNs,
Whisper, Wav2Vec2, and Conformer transformer-based NN models.

Table 1. Expected speech recognition quality

Model Accuracy% | WER (%) | CER (%) BLEU Computational | Memory re-
complexity quirements
LSTM Upto85—90| 12—25 5—15 | 0,50—065 O(n-d?) O(n-d)
BiLSTM Upto88—92| 10—22 4—12 |0,55—0,70 O(n-d?) O(n-d)
CNN Upto90—94 | 6—105 | 4—7.97 | 60—80 O(n-k-d? O(n-k-d)
Wav2Vec?2 Up to 95 Up to 5.0 2.5 - O(n-d? O(n-d)
Whisper Up to 94 6.0 3.0 - O(n?d) O(n*d)
Conformer Up to 95 4.5 2 - O(n-d*+n%d) O(n-d+ n?)

The data presented in Tabl. 1 illustrate the range of average values for recognition accuracy
and the WER, CER, and BLEU criteria determined for RNN, CNN, and transformer-based NNs of
various architectures, trained on datasets of different sizes and for different languages. The studies,
values, and descriptions of these models are provided in [2, 6, 8, 13-15, 19]. For NNs such as LSTM,
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BiLSTM, CNN, Wav2Vec2, and Conformer, computational complexity depends on the sequence
length and the dimensionality of the hidden state or feature space d. Each processing step has quadrat-
ic computational complexity, and the data in Table 1 illustrate how the performance of NNs varies
depending on input sequence size and architectural specifics. Since Wav2Vec2 employs a CNN, its
dependence on input size is linear, whereas for Whisper, it is quadratic due to self-attention matrix
computations. The Conformer model combines CNN with self-attention mechanisms, which affects its
computational complexity.

Memory requirements depend on the sequence length n and the dimensionality of the hidden
state or feature space d. In LSTM, each sequence element retains a hidden state of size d, while in
BiLSTM, memory requirements double due to bidirectional processing. However, overall costs remain
comparable to LSTM due to parallel computation. For CNNs, memory usage is determined by se-
guence length n, convolutional kernel size k, and feature dimension d, as each convolution processes
k elements. Wav2Vec2 uses convolutional layers for feature extraction, ensuring efficient memory
management, whereas Whisper requires more memory due to self-attention matrix storage. The high-
est memory requirements are observed in Conformer, which must store both the self-attention matrix
and convolutional components, adding to computational complexity.

Overall, the effectiveness of ASR using NNs depends on the quality and volume of training
data, model parameters, language complexity, and the applied post-processing and optimization mech-
anisms. Evaluating the obtained results using the described metrics enables the development of im-
provement strategies to refine the model and enhance recognition accuracy.

Conclusions

ASR is a crucial area of Al development, with applications across a wide range of industries.
The integration of NN models has significantly improved ASR system accuracy, enabling their effec-
tive use in real-world scenarios. The objective of this study was to describe a generalized approach
and algorithms for applying NNs, including RNN-based models (specifically LSTM, BILSTM),
CNNs, and transformer-based NNs, to the speech recognition task. The research findings indicate that
NNSs represent a modern and efficient approach to ASR. Each architectural type has specific imple-
mentation characteristics that impact recognition accuracy, computational complexity, and memory
requirements. LSTM networks allow for context retention and the processing of variable-length input
signals, whereas BiLSTM networks account for context in both directions. RNNs require fewer com-
putational resources, making them suitable for small datasets and less complex tasks. CNNs serve as a
powerful tool for extracting acoustic features in ASR and offer high computational speed due to paral-
lelization capabilities. However, since they do not inherently capture temporal dynamics, they are
often combined with RNN or transformers. Transformer-based architectures achieve the highest
speech recognition accuracy by effectively processing long sequences, capturing global dependencies,
and adapting to various accents, noise conditions, and speech styles. However, their primary drawback
is high computational complexity and substantial memory requirements, which can be critical for re-
source-constrained implementations.

The architectural descriptions of modern NNs presented in this study provide a well-founded
basis for selecting an appropriate ASR model for specific application contexts. The study outlines
input requirements, areas of application, advantages, and limitations of each NN type. The compara-
tive analysis of NN performance presented in this work can be utilized to predict the effectiveness of
implementing a particular NN architecture.
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