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NUMERICAL EVALUATION OF DATA MODEL PERFORMANCE
FOR MULTIDIMENSIONAL DATA ANALYSIS
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The article is dedicated to the numerical evaluation of the efficiency of two data models: the
star and snowflake schemas. The study presents the results of designing these models, including a
detailed description of their dimensions, facts, and values. For the research, a dataset comprising the
results of the Ukrainian National Multisubject Test from 2022 to 2024 was used. The numerical evalu-
ation employed performance and data redundancy, and storage space using as key metrics. For each
analytical operation — including slicing, drill-down, dicing, roll-up, and pivoting — the performance
assessment of the developed models was presented. Performance evaluation was conducted automati-
cally using SQL Server Profiler, while data redundancy was measured based on the Data Storage
Overhead metric. The numerical evaluation demonstrated that the star schema performs drill-down
and roll-up operations 36 % and 70 % faster, respectively, than the snowflake schema, while exhibit-
ing 33 % higher data redundancy.

Keywords: multidimentional data analysis; hypercubes; snowflake data scheme; star data
scheme; analytic operations.
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Cmammio npucesueHo YucerbHoOMy OYIHIOBAHHIO eeKMUBHOCII 080X Mooenel OaHuxX, wo 3a-
CMOCOBYIOMbCA 8 AHANIMUYHUX CUCHEMAX YINPABTIHHA OGHUMU: «3IpKa» ma «CHidcuHkay. [Ipedcmas-
JIEHO pe3yIbmamu NPOEKMYBAHHI YuUX Mooeell i3 0emaibHUM ONUCOM IXHbOI CMPYKMypU, KII0Ya0YU
sumipu, axmu ma sHavenus. Jns 00CASHeHH Memu 00CAIOHCEHHA BUKOHAHO MAKT 3A60AHHA: NPOEK-
my8anHs mooenell OaHUX y Medncax eudpanoi npeomemuoi odnracmi, iXHE pO320pMAaHHA V GuU2isdi
OLAP-zinepxyba, peanizayis 0CHOGHUX AHATIMUYHUX Onepayiti 6a2amosuUMIpHO20 AHALIZY OAHUX i3
Qikcayiero wuUOK0Oii; nPoseder s NOPIBHATLHO20 AHALIZY OMPUMAHUX Pe3YIbmamis i popmyniosan-
H5l GUCHOBKIB U000 epheKmUEHOCMI KONCHOI MOOel.

s npogedenHs uucenbHo20 OOCHIOHNCEHH BUKOPUCHIOBYBABCA MACUE Pe3VIbMAamie CKI1a0aH-
Ha Hayionanvuozo mynemunpeomemunozo mecmy Yxpainu 3a 2022—2024 poxu, ockineku yi oaHi ma-
10mb 6a2amosUMIpHy npUpooy, NOEOHYIOUU ampubymu 3 Pi3HUX HE3ANEHCHUX CYMHOCMeU NpeoMemHol
obnacmi. [ uucenvHo2o oyiHIOBAHHS 3ACMOCOBYBANIUCS MAK] MEMPUKU: UEUOKOOIsE GUKOHAHHS 3d-
nUmMis, HAOMIpHICMb OAHUX MA eh)eKMUBHICIb GUKOPUCTNAHHS NAM "SI

Y pobomi oyinero weuoxooiio suKoOHaHHA 6A306UX AHATIMUYHUX ONEPayiil — 3pi3y, CINEOPEHHS.
niokyoy, aspezayii, demanizayii, ma 0O0epPMAaAHHL — UISAXOM ABMOMAMU3Z08AHO20 GUMIPIOBAHHS HACY
006pobxu 3anumig y cepeoosuwyi SOL Server Profiler. /[na xoocroi onepayii Hadano pesyivmamu mec-
MYBAHHA MA NPUKIAOU MPbOX BUKOHAHUX 3anUmMi8. AHANI3 0aHUux woo0o weuokodii mooenel noKasas,
wo onepayisi 3pizy sukouysanacs Ha 2,86 % nosinvhiwe Ha MOOeNT «CHINCUHKAY, MOOI SIK CMEOPEHHS
niokyoie i obepmanusi — Ha 37 % ma 16,37 % sionosiono. Hatibinbwa piznuys y wieuoxooii' y 70,47 %
saghikcosana ona onepayii demanizayii. €Ouna onepayis, 0e M0Oelb «CHINCUHKA» Hepesadcdnd 3d
weuokooiero, — aepezayis (2,39 % weuowe), wo noscHIOEMbCsL it HOPMANI308AHOIO CIPYKMYPOIO Md
MEHWOI0 HAOMIpHIcmIo danux. Ompumani pe3yibmamu npeoCmasieHo y Uil 2iCmospam.

Haomipuicms 0anux susnauanacs za mempuxor Data Storage Overhead. Ilonpu 30inbuienns
Kinokocmi mabauyv y 1,83 pasu, mooensv «chixcunxay micmuiaa auwe Ha 0,5 % oinvue 3anucis 3a60si-
Ku it Hopmanizoeaniti cmpykmypi. Boonouac suauwenns DSO 0ns moodenv «zipxay cknanra 33 %, wo
NOSACHIOEMbCS 3HAYHUM OYONIOBAHHAM OAHUX Y HEHOPMANIZ08AHUX MAOIUYSIX BUMIDIS.

Knwowuogi cnoea:. 6azamosumipnuil ananiz oanux; 2inepkyo; mooens 0aHux «3ipKay; mMooeib
OAHUX «CHIJICUHKAY; AHANIMUYHI onepayii.

Problem’s formulation

Various data models are used for data storage in information systems, defining the organiza-
tion, storage format, and data processing methods. The most common types of systems designed for
data storage include databases, particularly relational databases and data warehouses. If an information
system is intended for daily transaction processing operations, such as data insertion, updating, and
deletion, it is more appropriate to use relational databases for data storage. In the case of developing
business intelligence (BI) systems that require comprehensive analysis of multidimensional or big data
for decision-making, data warehouses (DW) should be employed. This is because they typically con-
tain historical data that is updated periodically and used for trend analysis and decision-making.

For the design and development of efficient data storage structures, particularly in Online An-
alytical Processing (OLAP) systems, various data models are employed, the most common of which
are the star schema (StS) and snowflake schema (SnS) [1]. StS is used in DWs for organizing multi-
dimensional data, where a central fact table is linked to multiple dimension tables. This structure en-
sures query simplicity and fast data access. SnS is an extension of the StS, in which dimension tables
are normalized, meaning they are divided into sub-tables. This approach reduces data redundancy but
complicates query structures. The choice of data model significantly impacts performance, scalability,
and the efficiency of multidimensional data analysis. Given the continuous growth in data volume and
complexity, determining the optimal model is critically important for ensuring fast and accurate ana-
lytical processing [2].

The performance of implemented data models depends on several factors, including the degree
of normalization, data redundancy, indexing mechanisms, and query execution characteristics. The
efficiency of OLAP operations such as slicing, dicing, roll-up, drill-down, and pivot directly impacts
the overall performance of analytical and Bl systems. Therefore, numerical evaluation of the perfor-
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mance of different data models is crucial for determining their suitability for processing large-scale
multidimensional data.
Analysis of recent research and publications

In modern BI systems, DWs play a key role in enabling efficient multidimensional data analy-
sis. Various data models, such as the StS and SnS, are widely used for structuring DWS, and their
effectiveness has been the subject of numerous studies.

In the late 1990s, Ralph Kimball was the first to formalize the concept of the StS, advocating
it as the primary model for DW design. He described it as a simple and fast-to-implement structure,
optimized for multidimensional analysis. The SnS, on the other hand, was developed as an extension
of the StS to accommodate hierarchical structures within dimension tables. One of the first researchers
to advance the idea of data normalization for designing the SnS was Bill Inmon.

Studies [3—5] emphasize the importance of selecting the optimal data model in the context of
query performance and data storage efficiency. Research on OLAP query performance across different
data models [6, 7] indicates that the execution time of analytical operations (slicing, dicing, roll-up,
drill-down, pivot) is highly dependent on the chosen data schema. Additionally, recent studies [1, 8]
suggest that data model performance is significantly influenced by the software implementation of the
DWs, the indexing mechanisms employed, and the hardware resources available.

Despite the substantial body of existing research, the issue of comprehensive numerical evalu-
ation of data model performance in the context of multidimensional analysis remains highly relevant.
Therefore, further investigation in this area is crucial for optimizing DW performance and enhancing
the efficiency of analytical and Bl systems.

Formulation of the study purpose

The aim of this study is to present the results of a numerical evaluation of two data models —
StS and SnS — which are used for the software implementation of DWs designed for multidimension-
al data analysis. To achieve this goal, the study includes the following tasks:

— designing data models within the chosen domain;

— deploying these models as an OLAP data hypercube;

— executing key analytical operations for multidimensional data analysis while recording
their performance;

— conducting a comparative analysis of the obtained results;

— formulating conclusions regarding the efficiency of the developed data models.

The results of this research provide a well-founded basis for determining the optimal data model
for multidimensional data analysis, depending on key criteria such as performance, memory efficiency,
and data redundancy reduction. These factors are critically important for building efficient DWs.

Presenting main materials

A data model is a formalized representation of the structure, relationships, and constraints of da-
ta, used for storage, processing, and analysis. It defines how data is organized, interconnected, and ac-
cessed. Data models ensure that data is stored and structured according to specific principles. The two
most common data models used for structuring DWs are the StS and SnS [9]. Regardless of the model
type, their architecture consists of fact tables, dimension tables, and a set of measures. The primary dis-
tinction between the StS and SnS lies in the relationship structure between the fact table and the dimen-
sion tables. In the StS, all dimensions are directly connected to the fact table, and the data within these
tables is denormalized or only weakly normalized. In contrast, the SnS allows dimension tables to con-
tain hierarchies, represented by child tables that emerge through the data normalization process.

Suppose that F represents the fact table, M={m,...,mc} is the set of measures in the fact table,
and K={Kas,...,Kan} is the set of foreign keys linking the fact to the i-th dimension. Then, the fact table
for both StS and SnS can be described as:

F:(IDF,K,M>, Q)
where IDr — is the primary key of the fact table.

Each record in the fact table is uniquely associated with the corresponding records in the
dimension tables through a functional dependency, which implies that each combination of foreign
keys determines a set of measures in the fact table, described as:
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If D={d,,...,dn} represents the set of dimension tables, and A={ai,...,am} is the set of attrib-
utes for each i-th dimension, then the dimension table for the StS can be described as:

di=<|Ddi,A>, i=1.,n, 3)

where n is the number of dimension tables, and, 1Dqi is the primary key of the i-th dimension table.

For mathematical description of the dimension tables in the SnS, it is necessary to account for
its hierarchical structure [10] by introducing the set of foreign keys FK={fks,...,fkin} and the set of
normalized sub-dimension tables S={su1,...,Sii}. Taking this into consideration, expression (3) is trans-
formed into:

d; = (1D, ,FK, A). 4)
In this case, each s;; normalized child dimension table can be described as:
s = <|DS”,A>, (5)

where IDSij — is the primary key of the s;; normalized child dimension table.

The relationship between the fact table and the dimension tables can be mathematically de-
scribed through the set of foreign keys as follows:

Viefl..n}, kg ed;, 3f eF:flky [=dkg | (6)

Expression (6) shows that each value of the foreign key in the fact table refers to the corre-
sponding record in the related dimension table.

For the numerical study of the StS and SnS, a dataset of results from the National Multi-
Subject Test (NMT) of Ukraine for the years 2022-2024 was used [11]. The NMT is a test structured
in a 3+1 format, where three subjects are mandatory, and one subject is chosen by the graduate based
on personal preference. The results of the NMT have a multidimensional nature, as they combine data
from various independent entities within the data domain. Tabl. 1—2 describe the composition of di-
mensions and metrics of the data domain, which were implemented in the developed StS and SnS.

Table 1. Composition of the domain dimensions

Dimension | Name of a dimension Description of a dimension

di Time dimension Represents the years in which the test was conducted

dz Location dimension Describes the territorial components related to test participants

ds Course dimension Lists the academic disciplines available for students to take as
part of the test

ds Participants dimension | Includes quantitative and categorical attributes of students who
took the test

ds School dimension Describes the types and attributes of the schools where students
studied

ds Status dimension Represents the classification and status of the test outcomes

Table 2. Composition of the domain measures

Measure Description of a measure
m; Total count of students who registered for the test
m; Count of students who attempted the test but did not pass
ms The mean score across all test takers
My Students who achieved a perfect score in at least one subject
ms Students who achieved a perfect score in two subjects
Ms Students who achieved a perfect score in three subjects
m Students who obtained the highest possible total score
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The models were programmatically implemented using SQL Analysis Services, and their dia-
grams are presented in Fig. 1 and 2, respectively.

OutlD £ int —o—
N . ~——o— SchoollD £ int
Birth date ExamResultsStar choeo m
SexTypeName ResultiD & int schoslName arener
RegTypeName varcha G < outlD = SchoolTypeName
Ball100 float AuthorityName
SettlementID & int —o—— = SettlementlD —i: TestStatuses
SettlementName varcha TestStatusID L o— TestStatusID & int
AreaName = TestlD "t TestStatusName
RegionName varchar YearlD nt >
- .
~ >— YearlD £ int
TestiD £ int -o——~
Year nt
TestName
TestShortName
Fig. 1. Star schema diagram
RegTypes
RegTypeName ) Qutip £ int \ ResultiD £ int TestStatuses
Birth jate ~ < QutiD t - - TestStatusID & int
Settlements SexTypeName z Ball100 float TestStatusName
SettlementiD & int < ReglypelD t TestStatusiD
|
SettlementMame SchoollD £ >— TestiD - -
TestiD £ int
ArealD t o— < SettlementiD t YearlD
) | TestName
= N < SchoollD £ int
§ SchoolName
AreaName o~ YearlD £ int
SchoolTypelD
RegioniD - Year
AuthoritylD t > {
SchoolTypes
RegioniD £ int >
T SchoolTypelD & int

RegionName
SchoolTypeName

EducationAuthorities

AuthoritylD & int

AuthorityName

Fig. 2. Snowflake schema diagram

To conduct a numerical comparison of the developed models, they were deployed as a data
hypercube using Microsoft SQL Server Analysis Services, consisting of six dimensions. The set of
dimensions D was normalized to the third normal form (3NF) for the SnS. This normalization ensured
the atomicity of attributes in the fact tables, eliminated transitive dependencies between their fields,
and guaranteed that all attributes depended solely on the primary key. The dimensions d,, da, ds were
represented with hierarchical relationships between their components. In the case of the location di-
mension, it is defined as: d,={d21, d22, d23}, where d21—d22—> dz3, This hierarchy represents the ad-
ministrative division: region — district — settlement. For the participants dimension, defined where:
ds={da1, da2}, me da1—>da, the hierarchy reflects the relationship: registration type — test participant.
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The school dimension is described as: ds={ds,1, ds2, ds3}, where ds1—ds>—> ds 3, to represent the hier-
archical structure: education department — type of educational institution — specific educational in-
stitution.

Thus, the StS consists of one fact table and six dimension tables, while the SnS consists of one
fact table and eleven dimension tables. The fact table in both models contains 2 891 8146 records,
whereas the dimension tables contain 875 044 records for the StS and 878 747 records for the SnS.
This indicates that doubling the number of dimension tables in the SnS led to only a 0.5 % increase in
stored records.

The total memory usage after populating the tables with data was 549,13 MB for the StS and
412,72 MB for the SnS. Although the StS contained 0.5 % fewer records, it required 33 % more
memory compared to the SnS. This is due to the significant data redundancy in its denormalized struc-
ture. If we assume that the memory size Sy occupied by the SnS represents the data volume without
redundancy, and S; represents the memory size of the StS, then the Data Storage Overhead (DSO)
metric can be used to evaluate the storage efficiency of both models:

DSO = >t —5n 4 100%. (7)

m

This allows us to conclude that ~33 % of the storage space in the StS is occupied by duplicat-
ed data.

To evaluate the performance of the developed models, a series of analytical operations was
conducted, executing 50 queries for each of the following operations: slicing, dicing, roll-up, drill-
down, and pivoting. The execution speed of the result set retrieval was automatically recorded.
Tabl. 3—6 present three sample queries for each operation.

Let the developed data hypercube G be described as:

G= <D, M > , (8)
where D = {ds,...,ds} — the set of dimensions of the hypercube, corresponding to the set of dimension
tables in each data model; M={m;,...,m;} represents the set of measures within the hypercube, charac-
terizing the process as described in Tabl. 1 and 2, respectively.

Thus, the slicing operation, which fixes the value of a dimension d; at a specific value d;” and
reduces the dimensionality of the data hypercube, results in the creation of a data slice, which can be
expressed as:

G ={m|d;=d;,vd, e D\{d}}, (9)

where G’ — is the new hypercube after fixing the dimension.
Tabl. 3 presents examples of queries for performing the slicing operation and the results of
their evaluation.

Table 3. Examples of queries for executing the slicing operation

Query | Measure | Slicing parameter Data scheme Resulting Query execution time,
set, records ms
Q1 my | dh=2023 gg\/\slglg?(r:icheme 886 805 ggg
Q2 ms ds=enrolled ggv\s,(f:g ir:icheme 2524 549 ;gg
Q3 my | de=math gg\/\slglg?(r:icheme 1997 463 ;2‘21

The dicing operation returns a subset of values across multiple dimensions. If dicing is per-
formed for dimensions di and d;, the new data hypercube G “is described as:

where D] cd; and D; < d;— are subsets of the dimensions.
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Tabl. 4 presents examples of queries for performing the dicing operation and their evaluation

results.
Table 4. Examples of queries for executing the dicing operation
Query | Measure Slicing parameter Data scheme Resulting Q_uery execu-
set, records | tion time, ms
. Star scheme 27
d:=2023 and d2,1= Dniprope-
Q1 ms trovsk region Snowflake 105 496 39
scheme
Star scheme 27
Q2 ms d1=2024 and de=math Snowflake 234112 36
scheme
d2,1= Dnipropetrovsk region Star scheme 37
Q3 ms and ds =gymnasium and Snowflake 101 207 32
d;=2022 scheme

The roll-up operation, which performs data aggregation by ascending a level in the hierarchy
of a dimension for the metric my aggregated at level dik, is mathematically described as:

mk, = ka, dia€di, (11)
di‘k+1
where dik+1 represents the next level in the hierarchy being aggregated.

Examples of queries for performing the roll-up operation and their evaluation results are pre-
sented in the Tabl. 5.

Table 5. Examples of queries for executing the roll-up operation

Query | Measure | Slicing parameter Data scheme Resulting set, Query execution
records time, ms
QL | m G e | 14694 53
@ | m g T e | % 263
Q3 Mz | Ao e, oz gg\/\sr(f:gi?icheme 25 jg

The drill-down operation, which is performed by descending to a lower level in the hierarchy
for the metric mix aggregated at level dix , can be mathematically described as:

6., =My , where d; 1 d,,,. (12)
Tabl. 6 presents examples of queries for performing the drill-down operations.

Table 6. Examples of queries for executing the drill-down operation

Query | Measure | Slicing parameter Data scheme Resrtélct(i)r;gsset, Que{?{’n Z)fencigtion
Q1 Ms 0za= daz ¥ gﬁiorv?/?gi?escheme 310 466 ggi
Q2 M 0z3= dzz d gaagvf/?girgicheme 191056 i%g
Q3 m2 dz2= doa ¥ gﬁic:viglt::li?escheme S04 ;gj
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The pivot operation changes the way dimensions are displayed in the hypercube. After applying
the permutation operator P between two dimensions d; and d; the data hypercube G'is described as:

The histograms with grouping, shown in Fig. 3 and 4, display comparative information regard-
ing the performance of the developed data models.

S B Papnl; Pivot Snowflake;
1,272
C_ B Papl; Pivot Star; 1,093
; Drill-down

nowflake; 7,559
B Pagl; Drill-down Star;

4,434

|

|Tou. Psaal; Dice Snowflake;
2 0,022

| M Paal; Dice Star; 0,016

Iftl Psal; Slice Snowflake;
0,036

I B Papnl; Slice Star; 0,035 Query execution time, s

(o

Fig. 3. Comparison of the performance of the developed models for the operations of slicing,
dicing, drill-down, and pivot

Snow/flake I

Roll-up

Star

258,000 260,000 262,000 264,000 266,000 268,000 270,000

Analyticoperation

Query execution time, s
Fig. 4. Comparison of the performance of the developed models for the roll-up operation

To generalize the performance indicators of the models, the time spent on generating the re-
sulting datasets was normalized to the average query execution speed, defined as the time required to
return 100 000 records from the resulting dataset for all analytical operations of the hypercube.

The analysis of the data presented in Fig. 3 and 4 shows that for the slicing operation, the per-
formance values differ insignificantly, with the slicing operation taking 2,86 % longer on the SnS. In
the case of the dicing and pivoting operations, the performance difference becomes more significant,
with these operations taking 37 % and 16,37 % longer, respectively, on the SnS. The greatest perfor-
mance difference, which amounted to 70,47 %, was demonstrated during the drill-down operation.
The only operation where the SnS outperformed in terms of performance was roll-up, which was per-
formed 2,39 % faster, which may be explained by the lower data redundancy and its normalized di-
mension structure. Overall, the StS demonstrates higher performance for most analytical queries, es-
pecially in the dicing and drill-down operations.

By evaluating the performance and memory usage criteria, a comparative characterization of
the developed models was created, with the main values presented in Tabl. 7.

Table 7. Comparative characteristics of the StS and SnS

Characteristic Star Schema Snowflake Schema

Structure Simplicity Higher Low (due to data normalization)

Query Speed Higher (less JOIN operations) Lower (more JOIN operations)
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Continue of the table 7

Number of JOIN operations | O(n) O(n+m)

Data Redundancy High Low

Data Storage Volume Bigger Smaller

Ease of Modification It is more difficult to update due | Easier to update due to data distri-
to data duplication. bution

As seen from the data presented in Tabl. 7, the StS features a high structural simplicity and
faster query performance due to fewer JOIN operations. However, it has high data redundancy and a
larger data storage volume. The SnS, on the other hand, is characterized by greater structural complex-
ity due to normalization, which results in slower query performance due to an increased number of
JOIN operations. It exhibits lower data redundancy and requires less storage, while being more con-
venient for modifications due to the distribution of data. It should be noted that all test queries were
executed on non-indexed data. Indexing the data in the SnS can be utilized to improve its performance.

Conclusions

The numerical evaluation showed that the StS is more optimal in terms of performance for
most OLAP operations, except for roll-up. This is because in the StS, all dimension attributes are lo-
cated in a single table, which avoids additional joins when executing SQL queries. Additionally, it has
a simple structure and minimizes the number of necessary joins between tables. However, the SnS
model may be more appropriate if the priority is space efficiency and structural clarity of data, espe-
cially for large DWs with many hierarchy levels, as it ensures table normalization and reduces data
redundancy.

The evaluation of the size and structure of the created models led to the following conclusions.
Despite the increase in the number of tables by a factor of 1,83, the SnS model contains only 0,5 %
more records, which is due to its normalized structure. At the same time, the StS model occupies 33 %
more memory, which is explained by significant data duplication in the denormalized dimension ta-
bles. Therefore, in terms of efficient memory usage, the SnS model is more optimal, as its normaliza-
tion significantly reduces excessive data storage.

Based on the evaluation of performance, generalized recommendations were formulated regard-
ing the selection of a data model for performing analytical multidimensional operations, specifically:

— if the system executes frequent drill-down, dicing, or pivot operations, the StS model is
preferred;

— if the focus is on aggregated reports and reducing data redundancy, the SnS model may be
more effective.

The results of the numerical study presented in this work can be used to choose the optimal DW
schema depending on specific business needs and the volume of analytical queries for other data domains.
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