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Effective calculation of electromagnetic devices is a crucial condition for mathematical model-
ing of complex physical systems. At the moment, this task is far from over. In particular, the problem of
modeling magnetostatic systems (MS) cannot be considered solved. Let us recall that MCs are physical
devices, the primary sources of the magnetic field for which are either permanent magnets, or station-
ary currents, or a combination of such sources. Currently, MCs make up a significant part of modern
devices. Therefore, the task of detailed modeling of the operation of such systems is very important. The
aim of the study is "approximately"” axisymmetric systems, and they have a three-dimensional zone, the
size of which is very small relative to the entire MS. But it is in this zone that the magnetic field needs to
be found, and the calculation of the field needs to be done very precisely. Therefore, the calculation of
such systems has specific features and is associated with significant difficulties. Such MCs can be
called quasi-horizontal (KVS). These systems are of great practical importance, in particular, they are
widely used in electronic optics, and have a number of other applications.

In order to perform the precessional calculation of the KVS, the authors proposed an algo-
rithm that logically consists of two stages. At the first stage, the MS is calculated as fully axisymmet-
ric. At the second stage, only the three-dimensional working part of the MS is calculated, the results of
the first stage are used as an external field.

Keywords: magnetic systems; method of vector integral equations; modeling of electronic-
optical devices; convergence of the iterative process; non-linear environments.

Asmopu 0ocridxncyoms 0cooaUB0CMI PO3PAXYHKY OJi1 BANCIUBO20 KIACY MASHIMOCNAMUYHUX
cucmem, wo NOEOHYIOMb 6 COOL NACMUBOCII SIK MPUBUMIPHUX MAK | gicecumempuynux. Ilpaxmuuno
6eCh NPULad BiCECUMEMPUYHUL, 30 BUKTIOYEHHAM pobouoi mpusumiproi obnacmi. L{i cucmemu dyice
BAICKT OJIs1 YUCETLHO20 AHANI3Y, 00, K NPABUNO, 60HU GUMALAIOMb NPAKMUYHO NPEYU3iliHO20 po3pa-
XYHKY came 8 mpUusUMIPHILl 30Hi.

3oxpema, 0nst npuadie enlekmpoHHOL ONMUKYU MacHimHe noie opmye KoHpicypayiro ROmoxy
€eKMPOHIB, HeBIPHULL PO3PAXYHOK SIKO20 NPU3BOO0UMb 00 3HAYHO20 NIOSUWEHHS MeMnepamypu npu-
CMpoIo [ HABIMb 00 MOMCIUBOL 3MIHU MACHIMHUX Glacmugocmell mamepiany npurady. Kpim moeo,
ehexmugricmv pobomu npunady 8 YboMy GURAOKY 3HAUHO ZHUIICYEMbCAL.
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Ocnosna npobnema po3paxyHKy makux MAasHimocmamuyHux CUCmem nos sa3ama 3 OUcKpemu-
sayiero. s nodibnux cucmem 80HA 8 3HAYHIN MIpi 8UMyULeHO He pisHoMipHa. L]e suxknuxae npobremu
i3 30idcHicmi0 HeNiMiliHo20 imepayilino2o npoyecy. A came, AKWO SUKOHAMU OUCKDEeMU3AYil0 MAcHi-
MOCMAMUYHOT cUcmemMu 8IOHOCHO PIGHOMIDHO, MO MAMUMEMO HEOONYCIUMO 8eIUKY KITbKICMb efle-
MEHmig, 4ac po3paxyHKy maxux cucmem 6yoe oyoice eelukum. A 6 UNAOKy He pieHOMIPHOI OucKpemu-
3ayii, AK NOKA3YI0Mb YUCETbHI eKCnepuMeHmu, imepayitiHull npoyec modxce oymu posodischum. Taxoowc
C0 36epHYmMU Y8a2y HA Me, WO BNIUE BICECUMEMPUUHOI YACMUHU NPULAOY HA MPUBUMIPHY nadae
3a1eHCHO 610 8I0CcmaHi 00 YMO6HOI oci npunady. Ax npasuno, mpusumipHa 4acmuHa po3mauio8ana
O1U3bKO0 6i0 0ci 0bepmanHa i mae He3HauHul 00 'em. Ilpuyomy, 0na yici yacmunu nompiono eusHavu-
mu po3nooileHHs AKoMo2a moyHiue. Bicecumempuuna uacmuna modsce po3ansioamucs 8 Yux ymMoeax
5K 0JHCepeno NepeuHHO20 MASHIMHO20 NOJs. K noxasyome yucenvHi eKCnepuMeHmu, LOXUoKu 8 pos-
NOOINEHHI eKMOPA HAMACHIYEHOCMI 8I0 YIET YACTNUHU NPAKMUYHO He 0YJice ICHOMHO NAUBAIOMb HA
OCHOBHUIL NPOYeC — HA PO3PAXYHOK NOJISL 8 MPUGUMIDHIU YACHUHI.

Taxum uunoM, PO3PAXYHOK NOOIOHUX cUCmeM MA€E ICMOMHI 0COOAUB0CHI T NO8 S3aHUL 31 3HA-
unumu cneyughiunumu mpyonowamu. Taxi MC mooicna nazeamu xeazigicecmumempuunumu (KBC). Ix
MOACHA BUOINUMU 8 OKpeMUll NIOKIAC MPUBUMIPDHUX MacHImHUX cucmem. 1100ibHi npunradu euxopuc-
MOBYIOMbCS 8 eNIeKMPOHHI ONMUYi, Mma Maiomy MUl 8AXNCIUBL 3ACMOCYBAHHSL.

Knwowuogi cnoea: macnimui cucmemu, Memoo 6eKMOPHUX THIMESPATbHUX PIGHSHb; MOOETI08AH-
H5l eIeKMPOHHO-ONMUYHUX NPULAdis; 30idcHicmb imepayiino2o npoyecy; HeliHiliHI cepedosuiya.

Problem’s Formulation

Efficient calculation of electromagnetic devices is a crucial condition for mathematical model-
ing of complex physical systems. At the moment, this task is far from being completed. In particular,
the problem of modeling magnetostatic systems (MS) cannot be considered completely solved. Recall
that MS are physical devices whose primary sources of magnetic field are either permanent magnets or
stationary currents, or a combination of such sources. Currently, MSs make up a significant part of
modern devices [1,2]. Therefore, the task of detailed modeling of such systems is very important. In
particular, this includes the modeling of arbitrary nonlinear environments as a prerequisite for real
devices [3].

In turn, the optimization of the designs of such systems implies the possibility of detailed
modeling of their operation. One of the circumstances that significantly complicates modeling is that
real MSs have a complex three-dimensional geometry that needs to be taken into account.

The location of the observation points (OPs) relative to the MS structure and the requirements
for the accuracy of the magnetic field calculation are very important. Observation points are those
points at which the magnetic field or other MS parameters are to be calculated. Specifically, if the OPs
are located far from the MS surface, the calculation is relatively simple, but if not, a detailed approxi-
mation of the MS magnetization vector is required, at least in the vicinity of the OPs. This, in turn,
raises problems with MS sampling and the convergence of the nonlinear iterative process. Namely, if
the MS discretization is performed relatively uniformly, we will have an unacceptably large number of
elements, and the calculation time of such systems will be very long. And in the case of non-uniform
discretization, the iterative process may be divergent [4].

The purpose of this research is to consider “almost” axisymmetric magnetostatic systems that
have a three-dimensional working zone, its size is very small relative to the entire MS. However, it is
in this zone that the magnetic field must be found, and the field calculation must be done very accu-
rately. Therefore, the calculation of such systems has important features and is associated with signifi-
cant difficulties. We will call such MSs quasi-viscosymmetric (KVS) [5]. These systems are of great
practical importance, in particular, they are widely used in electronic optics [6,7], and have a number
of other important applications.

To perform the precession calculation of KVS, the authors propose an algorithm that logically
consists of two stages. At the first stage, the MS is calculated as fully axisymmetric. At the second
stage, only the three-dimensional working part of the MS is calculated, and the results of the first stage
are used as an external field. This algorithm and its difficulties are described in detail in [5]. However,
it should be noted that the three-dimensional and axisymmetric stages of the KVS calculation have a
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number of specific features that make them more efficient. This is crucial for the accuracy of the mag-
netic field calculation and program execution time.
Analysis of recent research and publications

As is well known, MS modeling methods can be divided into two main classes: differential
and integral. Differential methods directly approximate the nonlinear differential equations of magne-
tostatics and boundary conditions arising from the problem statement. The most common method of
this class is the finite element method (FEM) [8—10].

For integral methods, it is not necessary to set boundary conditions, and this is an important
advantage of integral methods [4,5,11]. Integral methods for magnetostatics problems are formulated
in the form of a nonlinear multidimensional equation with respect to physical or calculated field char-
acteristics. The authors propose a method of vector integral equations (VIE) for physical field vectors
as the main method for calculating the KVS [4,5,11]. It is advisable to use it for modeling most MSs,
where this method has a potential advantage over the FEM. However, it should be noted that VIE is
not sufficiently studied, both practically and theoretically, compared to the FEM.

Formulation of the study purpose

Purpose of this research is to improve the efficiency of calculating both the three-dimensional
and axisymmetric parts of the KVS of magnetic systems [4,5]. Undoubtedly, this is the key to optimizing
the KVS operation. The structure of both the three-dimensional and axisymmetric parts of such systems
have important features that allow us to create effective specialized methods for calculating such MS.
The objective of the study is to try to use the features of this structure to optimize the most resource-
intensive calculations, i.e., the formation of a matrix of coefficients of a nonlinear system of equations.
To do this, it is necessary to calculate a large number of integrals over a three-dimensional volume of a
specific type, which takes almost all the calculation time. Note that the use of quadrature formulas for
their calculation is less efficient than the proposed approach. In the three-dimensional case, the authors
present analytical formulas for their calculation. This allows us to efficiently calculate the components of
the tensor for a three-dimensional field from a homogeneously magnetized elementary polyhedron. If the
polyhedron has a special shape, the formulas are greatly simplified. The algorithm for such a calculation
is parallel, which makes it possible to further increase the calculation efficiency.

In addition, to calculate the KVS of the axisymmetric part, it is necessary to calculate the
components of the tensor from a homogeneously magnetized toroidal element very accurately. Such
an element usually has a rectangular cross-section. In this case, the components of the tensor are com-
plete and incomplete elliptic integrals of the first, second, and third kind. They are not taken analyti-
cally. For this case, the authors propose effective approximation algorithms for their calculation.

Presenting main material

As described in [4,5], for the vector U (x), where U (X) =B/ g+ H +2(Hg +Hy )+ M,
valid nonlinear equation (1):

U(x)zz-ﬁo(x)+j}<(x,y).M(U(y).dvy. (1)
Vv

From equation (1), we can obtain the magnetization vector M in the region V. To do this, let us
divide the region of magnets V into elementary regions Vi, so that their union constitutes the region V.
Moreover, no two regions intersect on a set of nonzero volume. We assume that in each elementary
region V; the magnetization is constant [4,5].

First, let's consider the MS calculation at the three-dimensional stage, since it requires the
most time. For the calculation of the magnetic field, the efficiency of solving the discretized equation
(1) is crucial. The practice of MS calculations has shown that it is most efficient to use hexagons as V;
for the three-dimensional case. The authors were able to reduce the calculation of the volume integral
of the polyhedron V; to the surface integral over its surface Si. Thus, the key to solving equation (1) is
to calculate the integral:

H =1/(4r) j il r3ds=1/(4n)§grad(1/ r)ds. )
I I
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It is advisable to optimize the calculation of (2) as much as possible. The integral (2) is calcu-
lated analytically in elementary functions if the boundary of the domain is rectilinear. In particular, it
is convenient to perform calculations for an arbitrary quadrilateral face in the local coordinate system,
where the Y-axis coincides with one of the diagonals and the X-axis is perpendicular to it. However, in
the case of a rectangular face, it is more expedient to introduce another coordinate system with axes
parallel to the sides of the rectangle, and the origin of the coordinate system coincides with one of the
vertices of the rectangle. In this case, the integral (2) is calculated very efficiently. Let the rectangle
have side lengths a and b, and the observation point Mo(Xo,Yo,Z0) does not lie on the continuation of any
side of the rectangle. Let's number the vertices of the rectangle: the point with coordinates (0,0) is 1,
the point with coordinates (a,0) is 2, the point with coordinates (a,b) is 3, the point with coordinates
(0,b) is 4. Let us denote by r; the distance from the observation point Mo to the point in the rectangle
with number i. Then:

H, =In[(b—y, +1,)- (00— Y, + 1) (=Y, + 1) (=Y + 1))

Hy = In[(a_ Xo + I’3) ’ (_Xo + rl) /((a_ Xo + rz) ’ (_Xo + rA))]' 3)
If z,=0s0 H, =0, else:
Hz :ZO'(H21+H22_HZ3_H24)' (4)

Here
H, =arxtg((b—Y,) - (@—%) (2, 13));
H,, =arxtg(y, - (@—%,)/(z,-1,));
H,; =arxtg((b - y,) - %) (2, - 1,)):

H, = arth(yo %o /(Zo : rl)) '

It should be noted that the sum of arctangles in (4) can be reduced to the arctangent of the
sum, only the formula in this case will be more complicated, but the calculations will be more effi-
cient. For an irregular quadrilateral, formulas similar to (3) and (4) can also be given, but they are less

commonly used and more complex. In addi-

16 tion, similar formulas can be given in both

cases if the observation point lies on the ex-
tension of one of the sides of the quadrilateral.

Structure of formulas (3—4) and the

7/ features of KVS allow us to organize their

14 -

calculation very efficiently. The optimization
possibilities lie at the level of discretization,
and now we will be interested only in the
working  three-dimensional  area.  The
description of the MS geometry by the user
usually consists in specifying the primary
polyhedra, which are then automatically
discretized into elementary ones. It should be
noted that the number of primary polyhedra is
relatively small, in the order of 10—30. Fig. 1
shows a typical discretization of half of the
working area. Discretization of the original
polyhedra into elementary ones consists in
drawing the planes dividing the original
' ' polyhedron.

0 2 4 If we consider the problem of solving
the discretized equation (1) not at the level of
elementary polyhedra, but at the level of the
original ones, then there are many opportuni-

12

10

e

Fig. 1. Discretization of half of the working
of the workspace into primary polyhedra
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ties to optimize the calculation of integrals (3) and (4). Namely, adjacent elementary polyhedra from
the same original polyhedron have the same common faces. Therefore, integrals (3) and (4) for a
common observation point can be calculated only once. This will almost double the time gain, since
only the outer faces of the polyhedron do not give a gain. In addition, for a fixed initial polyhedron, it
is possible to calculate the distances ri from a given observation point My to the vertices of the elemen-
tary polyhedra and store them in an array. This will significantly reduce the time for calculating inte-
grals (3) and (4), since the operation of calculating the root and logarithm takes a long time.

At the axisymmetric stage of the KVS calculation, it is necessary to be able to solve the prob-
lem of calculating the field for the case of an axisymmetric domain V as accurately as possible. To do
this, let's calculate the elements of the tensor from equation (1) Let's consider the most important case
of a toroidal element of rectangular cross-section. In this case, let us assume M =i,M, +i,M. Here

i, — orth of the vertical axis, and i, — orth of the horizontal axis, Mz = const, Mr = M/R, where

M = const. Then in this case div M =0 inside each element and the volume integrals in the discretized

equation (1) can be reduced to surface integrals.
Let us denote the observation point by Q(Rq,Zg), is the point of integration of the volume V
through M(Rm,Zm), ¥ = Zg — Zm. In addition, we denote the modulus of the integrals E and K by k:

k=2/R,Ry /\/(RQ +R,,)?+y?, and the characterization of the integral of the third kind:

ko =2\/RoRy /(Ry +Ryy) -

Then the components of the tensor from an axisymmetric elementary toroid of rectangular
cross section are equal to [11]:

Heg = Mg - YKI(2R,)\Ry / Ry -[K(K) + (Ry =Ry ) (R +Ry)- IT(=k&,K)];  (8)

He, =—M; Ry /R, T/ k(2-k*K(K)—2E(K)]; (6)
HZR:_MR\/RM/RQ'k'K(k)'E(k); (7
H,, =—M, - yk/ /Ry Ry -[K(K) = (Ry =Ry ) (Ry + Ry ) - 17(=k3, K)]. (8)

All components of the tensor must be multiplied by a constant 1/(2744,) .

Formulas (5—8) are the original ones. That is, let the point (R1,Z1) is the lower left vertex of
the rectangle, and the point (R2,Z>) respectively, the upper right. If the tensor component is calculated
by the formula F(R,Z), then the final value of the tensor will be equal to: F(R2,Z2) — F(R2,Z1) —
F(Rl,ZZ) + F(Rl,Zl).

The observation point has fixed coordinates — (Ro, Zg). The vertices of the rectangle M are
successively the vertices of the rectangle: (R, Z1), (Rz, Z1). (R2, Z2), (R1, Z2).

In formulas (5—8), K, E, and IT are complete elliptic integrals of the first, second, and third
kind. Recall that [12—14]:

712 zl2

K(k)= [dt/V1-K?sin’t, E(k)= [v1-k’sin’t;

7l2

(n,k) = jdt/((l—nsinzt)-Jl—kzsinzt).

Biggest difficulty in formulas (5—8) is the calculation of the function 77(—kZ,K).
In our case 17(—kZ,K):

7l2

11(-kZ k)= [dt/(@-+kZsin?t) 1~k sin?t)
0
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Since kg <k, then this integral corresponds to the circular case, according to the classifica-

tion [14]. After the transformations
Her =—Mg/2-R, /Ry, -[y/P-K(K)- (R, =Ry )/(Ry + Ry )+ /2+T)]; 9)

H,, =—M, -RQ/RM Jy/P- K(k)-(RQ —RM)/(RQ +Ry)+7/2+T)]. (10)
Here

P=(Ry —Ry)*+(Zg —Zg)* ;

T =signly- (R, —R)I-[K(K)- F(@,k) — K (k)- E(p, k) —K(K)- E(k)- F(@,k)].  (11)

To transform expressions (5) and (8), we used the lambda function of Heyman. Thus, we were

able to reduce the calculation of the elliptic integral of the third kind to a linear combination of incom-
plete elliptic integrals of the first and second kinds, which are easier to calculate. Also, in formulas
(9—11), we use complete elliptic integrals of the first and second kind. Now the main difficulties are
caused by the calculation of F(¢,k"),E(¢,k"). These are incomplete elliptic integrals of the first and

second kind:
[ [
F(gp,k'):jl/,/l—(k')zsinztdt, E(qo,k’):jw/l—(k’)zsinztdt,ne k'=v1-k?2.
0 0

The analysis of formulas (5—11) shows that the calculation of the field at the first stage de-
pends on the complete and incomplete elliptic integrals calculated at the vertices of the rectangle. As
in the three-dimensional case, it is very efficient to calculate these values only once, store them in a
small auxiliary array, and only then directly find the coefficients of the nonlinear system of equations.

It is convenient to calculate full and incomplete elliptic integrals on the basis of the arithmetic-
geometric mean Gauss [14].

Specifically, A, =(A ,+B,,)/2,B, =A_,-B,;,C, =(A_,—B,,)/2. For the calcula-
tion of the complete elliptic integrals, we should put A, =1, B, =+/1-k*,C, =1.As a result, we

N .

get: K(k) =7 /(2- A, ), E(k) =K (k) —0.5-22' -CZ . The value of N is selected from the condition
i=1

Cy <0, where 6 — accuracy of calculations.

To calculate the incomplete elliptic integrals, we should put A, =1,B, =k,C, = 1-k? . In
this case, the Landen transform is used [14]:

t9(Png —@n) =By /Ay 19(py) @ = 9.
As a result, we get:

Flpk)=pI(2-A). E(p.k) =D C, sin(¢)+E'/K'-F(p,k).

i=1
N is also selected from the condition Cy, <o, where ¢ — accuracy of calculations.

Note that the use of quadrature formulas to calculate (5—8) is less efficient than the proposed
approach. The case when Ry and Rq go to infinity is especially unfavorable. Then the expressions for
calculating Hgrr and Hzz are of a type of uncertainty o - o. In this case, k tends to one. This dramati-
cally reduces the accuracy of the calculation using quadrature formulas.

Conclusions

1. Efficient algorithm for calculating the KVS magnetostatic fields using a nonlinear multidi-
mensional integral equation has been implemented. This method consists of two stages — axisymmet-
ric and three-dimensional.

2. Analytical calculation formulas for the three-dimensional KVS stage are derived.

3. Optimized calculations at the three-dimensional stage, which is the most time-consuming.
This made it possible to reduce the calculation time of the three-dimensional stage for real problems by
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almost 2 times. The speedup factor significantly depends on the KVS geometry and its discretization

4. Efficient computational algorithms for the components of the tensor from an axisymmetric
elementary toroid of rectangular cross-section at the axisymmetric stage are proposed. This made it
possible to significantly improve the calculation accuracy.

References

[1] Flewitt, J. (2022). Electromagnetism for Engineers. Wiley.

[2] Choudhuri, A.R. (2023). Advanced Electromagnetic Theory. Springer Nature.

[3] Coey, M., & Parkin, S.P. (2021). Handbook of Magnetism and Magnetic Materials. Springer.

[4] Smolyansky, P., & Shamray,O. (2022). Generalized method of solution of magnetostatics equa-
tion. Mathematical Modeling, 2(47), 15-21. DOI: 10.31319/2519-8106.2(47)2022.268335

[5] Smolyanskyi, P., & Shamray, O. (2024) An efficient algorithm for solution of the magnetostatics
problem for quasivisesymmetic systems. Mathematical Modeling, 1(50), 105-110. DOI:
10.31319/2519-8106.1(50)2024.305490

[6] Hawkes, P., & Kasper, E. (2018). Principles of Electron Optics, Volume Two: Applied Geomet-
rical Optics (2 ed.). Academic Press.

[71 Groves, T. R. (2015). Charged Particle Optics Theory* CRC Press.

[8] Zhuming, Bi. (2018). Finite Element Analysis Applications: A Systematic and Practical Ap-
proach. Academic Press.

[9] Mickens, R.E. (2015). Difference Equations: Theory, Applications and Advanced Topics. Chap-
man & Hall/CRC/.

[10] Lindell, 1.V., & Sihvola, A. (2020). Boundary Conditions in Electromagnetics. Wiley.

[11] Jin, J. (2015). Theory and Computation of Electromagnetic Fields. (2 ed.). Wiley.

[12] Corn, G.A., & Corn, T.M. (2013). Mathematical Handbook for Scientists and Engineers: Defini-
tions, Theorems, and Formulas for Reference and Reviews Dover Civil and Mechanical Engi-
neering. (4 ed.). Courier Corporation.

[13] Gradshteyn. I.S., & Ryzhik, I.M. (2015). Table of Integrals, Series, and Products (8 ed.). Aca-
demic Press.

[14] Zwillinger, D. (2018). CRC Standard Mathematical Tables and Formulas. (33ed.). Boca Raton:
CRC Press.

Crnucox BUKOPHCTAHOI JIiTepaTypH

=

Flewitt J. Electromagnetism for Engineers. Wiley, 2022. 273 p.

Choudhuri A.R. Advanced Electromagnetic Theory. Singapore: Springer Nature, 2023. 310 p.

3. Coey M., Parkin S.P. (eds.) Handbook of Magnetism and Magnetic Materials. Springer, 2021.
1714 p.

4. Smolyansky P., Shamray O. Generalized method of solution of magnetostatics equation. Dnipro,
Kamianske, Mathematical Modeling. 2022. Ne2(47). P.15-21. DOI: 10.31319/2519-
8106.2(47)2022.268335

5. Smolyanskyi P., Shamray O. An efficient algorithm for solution of the magnetostatics problem for
quasivisesymmetic systems. Kamianske. Mathematical Modeling. 2024. Ne 1(50). P. 105-110.
DOI: 10.31319/2519-8106.1(50)2024.305490

6. Hawkes P., Kasper E. Principles of Electron Optics, Volume Two: Applied Geometrical Optics:
2nd Edition. Academic Press, 2018. 745 p.

7. Groves T.R. Charged Particle Optics Theory: CRC Press, 2015. 370 p.

8. Zhuming Bi. Finite Element Analysis Applications: A Systematic and Practical Approach: New
Jork: Academic Press, 2018. 504 p.

9. Mickens R.E. Difference Equations: Theory, Applications and Advanced Topics New York:
Chapman & Hall/CRC, 2015. 557 p.

10.Lindell 1.V., Sihvola A. Boundary Conditions in Electromagnetics IEEE Press, Wiley, 2020. 272 p.

11.Jin J. Theory and Computation of Electromagnetic Fields 2nd ed. Wiley, 2015. 740 p.

n


https://www.google.co.uk/search?hl=uk&tbo=p&tbm=bks&q=bibliogroup:%22Dover+Civil+and+Mechanical+Engineering%22&source=gbs_metadata_r&cad=3
https://www.google.co.uk/search?hl=uk&tbo=p&tbm=bks&q=bibliogroup:%22Dover+Civil+and+Mechanical+Engineering%22&source=gbs_metadata_r&cad=3

Posmin 2. MozaemoBaHHS Ta ONITUMI3AIlisl B TEXHOJIOTIT KOHCTPYKIIIHHUX MaTepialliB 89

12.Corn G.A., Corn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theo-
rems, and Formulas for Reference and Reviews Dover Civil and Mechanical Engineering 4nd ed.
Courier Corporation, 2013, 1152 p.

13.Gradshteyn 1.S., Ryzhik .M. Table of Integrals, Series, and Products. 8 ed — Academic Press,
2015, 1184 p.

14.Zwillinger D. CRC Standard Mathematical Tables and Formulas 33rd ed. — Boca Raton: CRC
Press, 2018, 872 p.

Haoiviwna oo peoxoneeii 16.12.2024


https://www.google.co.uk/search?hl=uk&tbo=p&tbm=bks&q=bibliogroup:%22Dover+Civil+and+Mechanical+Engineering%22&source=gbs_metadata_r&cad=3

