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Y koumexcmi 3pocmanns sapmocmi mamepianie, KOMNAEKMYIOUUX ma niosujerHs mapugis
HA eHepeOHOCH, NUMAHHA PAYIOHATLHOSO BUKOPUCMAHHSL CUPOBUHHUX Decypcié Habysae 0coonugoi
axmyanvHocmi. Lle 3ymo6neno HeoOxionicmio niosuujents eghexmueHocmi aUpOOHUYUX npoyecie ma
SHUDICEHHS. 8UMpPAm Ha U2OMOGNeHHs Npooykyii. Oowum i3 Hanpsamie makxoi onmumizayii €
PO38 ’A3aHHA 3a0a4 NIOCKO20 PO3KPOI0, W0 Oe3nocepednbo 8NnauUBaoms Ha 00CA2 3aIUWKIE MAmepiay
ma 3a2aivHy cobisapmicms NPpoOYKYii.

3adaua nnockoeo po3Kpor GOpMyIIOEMbCs AK ONMUMI3AYILHA NPOOIEMA POIMIWEHHS MHOJICU-
HU MEHULUX 30 PO3MIPOM eLeMeHMi6 Ha NILOWUHI, W0 8ION08I0AE 3a20Mo6Yi OLbUL020 PO3MIDY, 3 MEMOI0
MIHIMI3aYil 3anuwKie (Hezanoguenozo npocmopy). Egpexmusne eupiwenns yici 3a0aui 003601€ 3HUUMU


mailto:khudazhanna@gmail.com
mailto:alnechyporenko@gmail.com

10 Martemarnune moaesmoBanHs Ne 2(53) 2025

mamepianvhi empamu ma niosuwumu penmabenvuicms eupooruymea. Hasims nesnaune noxkpawenns @
cxemi posmiwents. Oemaell Modice 3abesnedumu Cymmesuti eKkoHomiunutl egpexm. bBinvuiicmo 3a0au
0aHo020 muny Hanexcams 00 knacy NP-CKIaOHUX, Wo YHEMONCIUBTIOE 3HAXOOHCEHHA MOYHO20 ONMUMA-
JILHO20 PO38’S13KY 8 0OMENCEHUL NPOMIJICOK 4acy OJia 3a0a4 Genuxoi poamipnocmi. Y 363Ky 3 yum, 0oyi-
JILHUM € 3ACMOCYBAHHSL e6PUCTHUYHUX MA MEMACSPUCTHUYHUX METO00I8, 30KPeMa 2eHeMUYHUX aleopuim-
Mi8, WO 3a0e3neuyomb 3HAXO0HCEHHS HADIUNCEHUX, ale NPAKMUYHO NPUOAIMHUX DillieHb.

Memoro 0ocnioxcents € po3podka epekmugHo2o0 MemaespucmuyHo20 nioxooy 00 po3e sI3aAHHsL
3a0a4i 0808UMIPHO20 NPAMOKYIMHO20 PO3KPOIO 3 BUKOPUCTIAHHAM 2eHEMUYHUX aneopummia. ¥ medcax
00CHI0HCEHHS CHOPMYTILOBAHO HOPMATbHI NOCMAHOBKY 3a0adi pO3KPOI0, NOOYO08AHO 8i0N0GIOHI Ma-
memMamuyHi Mooemi, a MAaKo;C peaniz08arno MOOUGDIKOBAHUL ceHeMUYHUL AT2OPUMM, AOANMOBAHULL 00
cneyugixu 3a0aui po3minyeHHs NPIMOKYMHUX 00 €Kmis.

3anpononosanuii areopumm 6azyemuvcs Ha imimayii npoyecie npupooro2o 8idbopy ma eso-
Joyii — 30Kpema, Ha 2eHepayii nonyaayii NomeHYyitiHuX pileHb (0COOUH), MexaHizmax cenexyii, Kpo-
cosepy ma mymayii. [{ns inmepnpemayii ceHemuuHUxX OQHUX Y BUTSI0I KOHKPEMHUX Kapm pOo3KPOIO
PO3pobreHo cneyianizoganuti oekooep, wo 3abesneuye mpanchopmayiio 2eHOmMuny 6 peaibHi npocmo-
poei KoHghizypayii.

Ha ocrosi po3pobnenozo nioxody cmeopeno npozpamte 3abe3neyents, ke 00360711€ 3a0a6a-
mu napamempu 6xXiOHux Oauux, i3yanizyeamu OMPUMAaHi piuierHs ma 30iUCHI08amu ix KiibKIiCHY oyi-
HKY. Pesynemamu yucenvuux excnepumenmis niomeepoxicyoms eQekmugHicms 3anponoHO8AHO20
Memooy 0151 WUPOKO20 KIACY 3a0ay NI0CK020 po3kporo. Ompumani po3e’ a3ku 0eMOHCMPYIOMb BUCOKY
AKICMb 3aN0GHEHHS NIOWI 3a20MOBKU MA 00360I5I0Mb IMEHWUMU 8UMPAMU MAMePIany, Wo Cnpusic
RIOBUWEHHIO 3A2AbHOI eKOHOMIYHOT eheKMUBHOCII UPOOHUUUX NPOYECTs.

Knrouosi cnoea: poskpiii mamepianis, 3a0aui OUCKpemnoi onmumizayii, Kpocosep, 2eHemuuHi
AnOPUMMU, 300adi PO3KPOIO MA YNAKOGKU.

Problem’s Formulation

Given the increase in prices for materials and components, as well as the increase in energy
tariffs, the issue of rational use of raw materials is gaining importance due to the need to optimize
production processes and reduce production costs.

Flat cutting is an optimization problem of finding a dense placement of a set of smaller parts
on larger objects. Solving this problem leads to the minimization of cutting losses, that is, the reduc-
tion of the volume of unoccupied space. Even small improvements in placement can lead to significant
material savings and reducing the cost of production.

Since most of the cutting and packaging problems are classified as problems with NP com-
plexity, finding exact solutions in an acceptable time is impossible. In this case, only the search for
local optima is possible using approximate algorithms.

The cutting and packaging problem consists in determining the optimal position of a finite
number of geometric objects in given areas, taking into account various constraints. Solving these
problems contributes to reducing production costs, increasing efficiency and saving resources. The
need is to create universal and effective algorithms that would work for different types of materials
and different part geometries. Therefore, the development and implementation of new approaches to
solving the problem of optimal cutting are extremely important and relevant.

Analysis of recent research and publications

Cutting and packing problems are important tasks in the field of optimization that arise in
many industrial and commercial sectors. These problems involve the efficient use of resources, cost
minimization, and productivity improvement in the manufacturing of products or the packaging of
goods. They belong to the class of NP-hard problems (Nondeterministic Polynomial time), which
means that solving them exactly requires the use of complex algorithms and numerical methods. The
main goal of solving such problems is to maximize the use of available space while minimizing costs.

The need for the development of efficient cutting methods was recognized as early as the mid-20th
century. A significant contribution to the research of this issue was made by Professor Yu.H. Stoyan [1],
who developed effective heuristic algorithms for orthogonal cutting. The solution of various classes of
optimization problems has been the subject of work by Ukrainian researchers, including O.O. Yemets, A.l
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Kosolap [2], L.F. Hulianytskyi [3], I.V. Serhiyenko [4], and S.I. Yaremchuk. Considerable attention has
also been devoted to cutting and packing problems in foreign publications. For example, Dyckhoff pro-
posed a typology of such problems. One notable example is the two-dimensional strip packing problem,
which consists of placing a given set of rectangles onto a semi-infinite strip in such a way as to minimize
the length of the used portion of the strip [5]. However, the application area of this problem is much broad-
er. It is used to solve practical problems involving the allocation of two-dimensional resources, such as
scheduling, workforce planning, as well as packing and placement problems.

Later, it became clear that the typology was insufficient to include current developments.
Therefore, Wischer, G., HauBner, H., Schumann, H. decided to present a new, improved typology,
providing a consistent system of problem types that allows for a complete classification of all known
cutting and packaging (C&P) problems. In [6], the authors reviewed the existing literature on uncer-
tainty in cutting and packaging problems, proposed a classification framework, and highlighted nu-
merous research gaps and opportunities for new research.

Most studies focus on approximate methods for solving such problems. Exact methods are
rarely used, as they require an exhaustive search of the entire set of feasible solutions to find the opti-
mal one. The efficiency of such exhaustive searches can be improved by enhancing algorithms in vari-
ous ways [6]. For example, algorithms can be optimized by ordering items in decreasing order of vol-
ume (first-fit decreasing algorithm). However, this approach does not guarantee an optimal solution
and leads to increased execution time for large input sizes. Improved exhaustive search is most com-
monly based on the branch and bound method [7].

In article [8], a solution to the problem of splitting a set of ordered elements using minimum-cost
objects within a set of minimum-cost solutions is proposed, while maximizing the cost of usable residues.
Since the concept of usable residues assumes that they can potentially be used to service new incoming or-
ders, the problem extends to a periodic structure. Thus, the solution at each point in time does not minimize
the cost of objects needed to service current orders, but is aimed at minimizing the total cost of objects.

However, existing methods do not always provide solutions close to optimal within an ac-
ceptable time frame, which creates the need to develop new methods for formulating and verifying the
conditions for solving new classes of problems.

Formulation of the purpose of the research

The purpose of this work is to develop an algorithm and a software module based on a genetic
algorithm for organizing the process of cutting a rectangular sheet of arbitrary shape into rectangular
parts of various shapes and sizes with waste minimization.

Presenting main material

A rectangular sheet of a given width and length is provided, along with an ordered set of
rectangular items. The sheet width, as well as the quantity and dimensions of the items, are specified.
The task is to determine the parameters for the optimal placement of the items that will allow all
elements from the order list to fit onto the sheet while minimizing the total material usage. Depending
on the layout, the rectangular items may be of the same or different sizes.

In the one-dimensional case, packing of rectangle involves placing items of equal width. In
this process, only one dimension is important. The use of items with different widths leads to the two-
dimensional rectangle packing problem. Additionally, rectangle packing problems can be three-
dimensional, for instance, in pallet or container loading tasks.

Many cutting and packing problems include additional constraints. These may be geometric
constraints (e.g., the shapes to be cut or packed must conform to certain forms), technical constraints (e.g.,
the use of specific tools or technologies), or time constraints (e.g., the need to complete the task quickly).

Cutting problems can be divided into cutting problems for measurable material, where items have
a predefined length, and cutting problems for unmeasurable material, where the length is random and
unknown in advance. Accordingly, these are classified as deterministic and stochastic cutting problems.

The cutting problem can be represented in different ways, depending on the ultimate goal. Let
us now consider several specific models.

We introduce the necessary notation:

J— material index, j=1,n ;
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k — workpiece type index, k = 1_q ;

i — index of the cutting method of a unit of material, i= 1_p ;

dijjk — number (integer) of blanks of type k obtained by cutting a unit of j-th material by i-th method;
b, — number of blanks of type k in the set supplied to the customer;

d j — amount of material of the j-th type;

Xjj — number of units of j-th material cut using i-th method (intensity of use of cutting method);

Cji — the amount of waste obtained when cutting a unit of j-th material using the i-th method,;

y — the number of sets of blanks of various types supplied to the customer.
Let's consider different types of cutting problem models.
Cutting model with minimal material consumption:

szij — min ; (1)
> > aijXij = by, k=14; @)
xj =0, i=1p; j=1n. ®3)

Here (1) is the objective function (minimum amount of materials used); (2) — a system of
constraints that determine the number of blanks required to fulfil the order; (3) — conditions for non-
negativity of variables. Specific to this model are constraints (2).

Cutting model with minimal waste:

ZZcijxij — min; ()
> > i =bg, k=10; )
Xj 20, i=1p; j=1n. (6)

Here (4) is the objective function (minimum waste when cutting materials); (5) is a system of
constraints that determine the number of blanks required to fulfill the order; (6) is the condition for
non-negativity of variables.

Cutting model taking into account the configuration:

y — max; (7)

> oxij <dj; (8)

> &jiXij = by, k=1q; ©)
xj20, y20,d;>0, i=Lp; j=1n. (10)

Here (7) is the objective function (maximum of sets including blanks of different types); (8) is
the restriction on the number of materials; (9) is the system of restrictions determining the number of
blanks required to form sets; (10) is the condition of non-negativity of variables. Specific to this model
are restrictions (9).

Due to the fact that exact methods based on exhaustive search cannot be implemented for
large-scale data, more efficient reduced search methods are used instead [9]. The use of effective ap-
proximate methods of combinatorial optimization, which are applied in practice, is determined by
several factors: practical problems are NP-hard, making exact solutions extremely difficult; the input
data often contain inaccuracies; objective functions may have multiple local extrema; and approximate
computational schemes allow the construction of algorithms that can solve not just one, but an entire
class of closely related optimization problems.

Evolutionary computation methods are effectively used to solve cutting and packing problems
[10]. These methods operate on a set of randomly generated solutions P, it is called the population. In
evolutionary algorithms, potential solutions are encoded as vectors of elements resembling the genetic



Poznin 1. MaremaTnaae MOIEITIOBAHHS B MIPUPOJHUYNX HayKaX Ta iH(GOpMAIliifHi TEXHOIOTI1 13

structure of chromosomes. New solutions, called offspring, are generated by applying genetic opera-
tors to existing solutions. The classical genetic operators used in evolutionary computation are crosso-
ver and mutation. Crossover facilitates the exchange of genetic information between chromosomes
encoding potential solutions. Two parent chromosomes are selected either randomly or based on a
specific rule and a crossover point is chosen at random. Then, the segments of the chromosomes to the
right of the crossover point are exchanged between the parents. The mutation operator randomly alters
any element of a chromosome, thereby increasing the diversity within the population. Over the past
decade and a half, evolutionary computation methods have become some of the most widely used
metaheuristic methods, as evidenced by a significant number of academic publications.

One variant of evolutionary computation methods is the genetic algorithm (GA) — an optimi-
zation and search technique that combines elements of deterministic optimization and stochastic ap-
proaches [11]. Genetic algorithms are often used in combination with analytical methods or other
stochastic algorithms to achieve the best results. They belong to the class of adaptive methods, effec-
tive for solving problems in search, optimization, and learning.

In this work, an algorithm has been developed that aims to optimize the placement of tem-
plates (patterns) within given contours in order to minimize material waste.

Main steps of the algorithm:

1. Initialization of the algorithm. The program starts.

2. Input data acquisition. Data about the array of templates to be placed and the array of con-
tours where they can be placed are loaded. This data is provided through an interactive subsystem.

3. Preliminary analysis of contours and templates. It is determined which templates can be
placed in each contour. Contours where no template can be placed are considered waste and are re-
moved from the array of contours.

4. lteration for each genome. For each possible combination of criteria (genes), an iteration is
performed to determine how to place templates within the contours.

5. Placement quality evaluation. For each placement option, the area of waste (contours with-
out templates) is calculated. The top m options with the least waste area are selected.

6. Updating the list of placed templates. It is checked which templates have been successfully
placed based on the selected optimal options, and a new placement list is generated.

7. Checking placement possibility in new contours. If no template can be placed in the newly
formed contours, they are moved to waste. Otherwise, the algorithm proceeds to the next step.

8. Removal of unsuitable contours. Contours in which no templates can be placed are deleted
from the array as waste.

9. Check for remaining templates. If all templates have been placed, the algorithm proceeds to
completion. Otherwise, new possible genomes are generated.

10.Genetic operations. Genetic algorithm operators (crossover, mutation, etc.) are used to cre-
ate new combinations of genes. Genomes that produce negative results are excluded from the next
iterations. A new population is formed, and the process repeats from step 4.

11.Output of results. The results include:

o the sequence of template placement within contours with coordinates;

o the percentage of generated waste;

e alist of unplaced templates (if any).

12.Completion of the algorithm. The algorithm finishes after generating and analyzing all pos-
sible placements. It demonstrates effective use of genetic algorithm principles for optimization tasks,
confirmed by scientific research and testing.

Fig. 1 shows a block diagram of the genetic algorithm.

The main idea of the work is to develop and apply a genetic algorithm to solve the problem of
placing rectangles on a two-dimensional rectangular sheet. According to the developed algorithm, an
application interface with all the necessary elements was created.

Consider the following problem. Let us consider a rectangular sheet of material of size WxH, on
which it is necessary to place a set of rectangular parts with fixed dimensions {(Wl,hl); (wa,hy );... (W Py )}

The goal is to cut in such a way that: all parts are placed on the sheet without overlapping, and material waste
(unused area) is minimal.
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Let us denote:
Sj— the area of the i-th part, this area is equal to W, - by ;

n

Sget = Z Sj — the total area of all placed details;
i=1

Ssheet =W - H — the area of the entire sheet;

Suseq — the area occupied by the smallest rectangle (bounding box), which covers all the

placed parts;
P — penalty function for overlap (for example, the number of pairs of overlapped parts);

a € R, — penalty weighting factor.

We use a specially constructed objective function (fitness function) that minimizes waste. Cut-
ting waste is the difference between the area of the sheet (or its used part) and the total area of the
placed parts without overlapping. Then the objective function has the form:

where S o4 — Sqet 1S the waste estimate, and the second term is the overlap penalty.

The goal of optimization is to minimize F, that is, to minimize the amount of waste and fines.
It is also necessary to introduce the following constraint conditions:
1. Rectangles should not extend beyond the page boundaries:

Xi+W<W; yi+hi<H,
where (x;;Yj)— coordinates of the upper left corner of the i-th detail, a W, — its dimensions

taking into account the rotation.
2. Rectangles should not overlap:

Ri() Rj=0, Vi= j,where Rj— areaoccupied by the i-th detail.

To solve the problem, a Genetic Algorithm (GA) was used, which simulates natural evolution-
ary processes. The main stages are:

1. Chromosome Encoding. Each chromosome represents the placement of all parts on a sheet:

e Partindex;

o Placement coordinates (X, y);

e Orientation (rotation by 90°, if allowed).

2. Population Initialization. An initial population of randomly generated feasible solutions is
created. For each part, random coordinates within the sheet and, if allowed, an orientation are generat-
ed. Overlapping of parts is not allowed (a simple greedy algorithm or constraints during generation
can be applied).

3. Fitness Evaluation. The fitness function is calculated according to the objective function. It
considers the area of placed parts, the bounding box size, and penalties for overlaps.

4. Selection. Parent selection is carried out using tournament selection or roulette wheel selection.

5. Crossover. One-point or position-based crossover is used: part of the part placements is in-
herited from one parent, the rest from the other, without duplication.

6. Mutation. Mutation operations include: changing a part’s position (X, y), changing its orien-
tation (if allowed), or swapping two parts. Some genes in the chromosome are probabilistically altered
to maintain genetic diversity.

7. Generation Replacement. A new generation is formed from the best individuals of the pre-
vious generation (elitist strategy) and newly created offspring.

8. Stopping Condition. The algorithm terminates after a fixed number of generations or if there
is no improvement for N consecutive generations.

The proposed genetic algorithm enables an efficient search for an approximately optimal solu-
tion to the rectangular sheet cutting problem while minimizing waste. Its flexibility allows the consid-
eration of additional constraints, such as part rotation or quantity limits, and it can be scaled for larger
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input data. The algorithm checks for rectangle overlaps. If rotation is allowed, an additional variation
(w <> h) is considered.

To verify the effectiveness of the proposed algorithm, a series of numerical experiments was
conducted with various sets of parts. In all experiments, a rectangular sheet of 100x100 arbitrary units
was used. The parts had dimensions ranging from 10x10 to 50%30 units. The total area of all parts
varied from 30 % to 80 % of the sheet’s area. Rotation of parts by 90 degrees was allowed.

The genetic algorithm parameters were chosen empirically and remained fixed for all test runs:

e Population size: 50 individuals;

o Number of generations: 100;

o Mutation probability: 20 %;

o Number of elite individuals: 5.

As a result of the experiments, it was found that the algorithm reliably placed all given parts
without overlaps, with an average sheet utilization rate of over 85 %. In typical experiments, material
waste ranged from 15 % to 18 %, depending on the configuration and orientation of the parts.

Here is an example of one of the experiments:

* Number of parts: 6;

* Dimensions of parts: (20%30), (50%20), (10x10), (25%25), (15%35), (30%30);

» Total area of parts: 5250 conventional units;

» Minimum rectangle covering all placements (bounding box): 80x80 = 6400;

» Waste: 6400—5250 = 1150;

258 -100% = 82,03%

 Area utilization factor:

It was also observed that using the bounding box as an approximate estimate of the actual oc-
cupied area allows for avoiding a rigid dependence on fixed sheet dimensions and provides greater
flexibility for practical implementation of the algorithm.

Fig. 2 shows the curve of the dependence of the objective function value on the generation
number. The graphs demonstrated stable convergence to a local minimum, typically within 30—50
generations. This indicates the effectiveness of the chosen chromosome encoding model as well as the
appropriateness of using elitist strategy and mutation operations.

Convergence of Genetic Algorithm (Minimization of F)
2000

—e— Objective function F

1750

1500

=
~J
v
(=]

1000

Objective function F

750

0 10 20 30 a0 50
Generation

Fig. 2. Convergence of the genetic algorithm
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The graph illustrates the convergence of the genetic algorithm: the value of the objective func-
tion gradually decreases with each generation, demonstrating the algorithm's successful convergence
toward a solution with minimal area waste and minimal constraint violations. A plateau is reached
around the 30th—35th generation, indicating the stabilization of the solution.

A comparison of the performance results of the developed algorithm based on the genetic al-
gorithm with the results obtained using the greedy algorithm and exhaustive search is presented in
Tabl. 1.

Table 1. Comparison of algorithm results

Method Area of parts | Bounding box | Used sheet Waste Utilization rate
area area (%)

Geneticalgo- | g oc 10000 10000 575 94.25

rithm

ﬁtrﬁ;dy algo- | g909 10000 10000 1100 89.00

Full search 9425 9600 9600 175 98.18

Thus, it can be seen that the developed algorithm allows approaching the quality of a full
enumeration with significantly lower computational load. The greedy method demonstrates the worst
utilization ratio due to its local nature. The full enumeration ensures the highest efficiency, but in prac-
tice it is too computationally expensive as the number of parts increases.

The main features of the developed application include: support for inputting new material
sheets with specification of their quantity and cost per linear meter; the ability to add parts with speci-
fied dimensions; generation of an optimized material cutting layout diagram based on a genetic algo-
rithm; calculation of the total area of material sheets, parts, and waste; automatic creation of a report
on the completed work on the project.

Conclusions

As the analysis shows, the cutting stock problem has a deep theoretical foundation and
numerous practical applications in material-intensive industries. Therefore, there is an urgent need to
develop specialized models and methods for solving the cutting problem. One promising direction is
the creation of genetic algorithms for solving optimal cutting and packing problems.

Genetic algorithms differ from classical optimization methods in that they do not require the
objective function to be smooth or differentiable, making them suitable for solving cutting problems,
which are often multi-extremal and lack analytical models. Another advantage of genetic algorithms is
their potential for parallel implementation, since each individual in the population can be evaluated
independently. This contributes to a significant acceleration of the solution search process.

As a result of the work, a proprietary genetic algorithm was developed and tested, which
allows optimizing the placement of rectangular parts of various shapes and sizes on a rectangular sheet
of arbitrary shape, which allows minimizing material consumption.

The developed application is therefore useful for solving cutting optimization problems, and
the implemented genetic algorithm demonstrates effectiveness. Additionally, software based on this
algorithm was developed, enabling the user to input data, visualize cutting results as a layout map, and
analyse quality indicators of the obtained solution. The program has shown the ability to handle
problems of varying complexity and dimension effectively.
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