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The study presents a generalized mathematical and algorithmic framework for multi-objective
optimization of the memory subsystem in hybrid CPU-GPU architectures. The proposed model explicitly
captures the coupling among bandwidth, latency, and energy cost within the memory hierarchy through
a vector objective function and operator-based formulation of the throughput pipeline. To identify Pa-
reto-optimal configurations, an evolutionary-gradient method is introduced, combining global explora-
tion via NSGA-11/MOEA-D with local refinement using ADAM and L-BFGS optimizers. Gradient infor-
mation is reconstructed from surrogate models based on Gaussian Process Regression and Radial Basis
Functions, ensuring convergence under limited data. Validation on an Intel Xeon + NVIDIA Tesla T4
system demonstrated 35—45 % higher bandwidth, up to 2x lower energy use, and 95th-percentile la-
tency reduced to 0.27—0.34 ms.

Keywords: multi-objective memory optimization, evolutionary-gradient methods, hybrid com-
puting architectures, Pareto optimization, energy efficiency, NSGA-11, MOEA/D.

Cmamms npucesuena po3pooieHHIO y3a2aibHeHOl MameMamuyHoi Mooeni ma ai2opummiyHo2o
nioxody 00 bazamoxpumepiaivhoi onmumizayii niocucmemu nam’smi y 2iOpUOHUX 0OHUCTIOBATILHUX
apximexmypax Ha ochosi CPU i GPU. Memoio 0ocniosicenns € popmysants meopemusHux 3acao OJis
EHEP2eMUYHO Y3200HCEHO20 KEPYBAHHS NAM SMMIO, SIKE 8PAX08YE B3AEMO3ANEHCHICIL MPbOX KIHOUOBUX
Xapaxmepucmux — NponycKHOI 30amHOCHI, TAMEeHMHOCME 00CIYNY Md eHePeemuyHux eumpam y 2io-
PuoHitl apximexmypi. 3anponoHo8ana mMooeib ONUCYE NPONYCKHUL KOHBEED 5K Y3200MCeHUll OUHAMIY-
HULl npoyec, y AKOMY UYACO8i, eHepeemuyHi ma NPONYCKHI NApamMempu po3eisioaromscsi K 634EMOo-
nog ’azami kpumepii onmumisayii. Ha yiii ocnoei cgpopmynvosano sadauy 6aeamoxpumepianbHoi onmu-
Mizayii, po3e siskom sxoi € muodicuna Ilapemo-onmumanvrux Kongicypayii, wo 6i0oopaxcaioms y32o-
OdiceHutl Oananc Mide RPOOYKIMUBHICTINIO, YACOBUMU 3AMPUMKAMU MA eHEPLeMUUHOI0 epeKMUBHICTIO
cucmemu.

3anpononosanuii esonOYiliHO-2padicHmHull nioXio peanizye inmezpayiio 2106aibH020 e80i0-
YIHO20 NOWLYKY 3 JIOKAILHOI CMOXACMUYHOI0 OnmuMisayicio, 3abe3neuyrouu 30aiancogane 00CIi-
OJICEHHS NPOCIOPY MOJICIUBUX KOHDIZypayitl i mouHe YmMOUHeHHs 3HAUOEeHUX pilieHb y be3nocepeonii
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oxonuyi gpponmy Ilapemo. Ha 6iominy 6i0 mpaouyitinux e8omOYIUHUX MemOo0i8, SKi He 8PAX08yronb
JIOKA/IbHY 2e0Mempito Yilb08020 NPOCMOPY, PO3POOIEHUL AN2OPUMM BUKOPUCMOBYE ANPOKCUMAYIIO
epadienmuoi iHghopmayii 0na Keposanozo CNpaMy8anHs NOwyKy. Y eunaokax oomedxcenoi KitbKocmi
EeKCHePUMEHMATbHUX CROCTHEPENCEeHb Ysi THGhopMayis 8i0HOBTIOEMbCA 3a OONOMO2010 CYPOSATMHUX MO-
Oefiell Ha OCHOBI 2ayc08020 npoyecy ma padiarbHux 6a3UCHUX GYHKYIU, wo 0036014€ 30epeemu cmili-
Kicmb I 30idcHiCMb ONMUMI3AYILIHO20 npoyecy be3 3HUNCeHHA MmoYHoCcmi Modentosanns. Taxa kombina-
yis 2106a16HOI e80MOYIUHOT eBpUCMUKY Ui IOKATbHOT Oughepenyitinoi adoanmayii hopmye eOurutl 0o4u-
COBANLHULL MEXAHIZM 05l 8I0MEOPEHHSL PIBHOBANCHO2O KOMUPOMICY MIdiC NPONYCKHON 30AMHICHIIO,
JIAMEHMHICII0 A eHepeeMUYHUMU BUMPAMAaMU CUCTHEMU.

Excnepumenmanvna sepughivayis na mecmosiii cucmemi Intel Xeon + NVIDIA Tesla T4 3a-
CI0UUNA NIOBUWEHHS NPONYCKHOT 30amHocmi 00 45 %, 3HUdICEeHHSA eHepeOCOANCUBANHS NPUOIUIHO
yogiui ma ckopouenus 95-20 nepyenmuias aamenmuocmi 0o 0,27—0,34 mc nopisusaro 3 bazosumu cxe-
mamu static partitioning ma fixed scheduling.

Kniouosi cnoea. bazamoxpumepianvua onmumizayis nam’smi, e8oaOYiliHO-2padicHmMHI Me-

moou, 2ibpuoni obuucniosanvui apximexmypu, Ilapemo-onmumizayis, eHepeemuuna e@exmueHicmo,
NSGA-1I, MOEA/D.

Problem’s Formulation

Hybrid computing architectures that integrate central processing units (CPUs) and graphics pro-
cessing units (GPUs) constitute the foundation of modern high-performance systems; however, their
overall efficiency critically depends on the organization of the memory subsystem. In such architectures,
computation proceeds through bi- or multichannel interactions in which data are continuously trans-
ferred between main memory, multi-level caches, and graphics accelerators, forming a complex pipeline
characterized by multiple temporal scales. The bandwidth of data-exchange channels, memory access
latency, and the energy cost of data transmission jointly define an interdependent system of criteria in
which improvement of one parameter almost inevitably degrades the others. For example, latency re-
duction achieved through aggressive caching or data duplication typically increases the energy cost,
while bandwidth enhancement via intensive GPU-channel utilization can overload PCle or NVLink in-
terfaces.

Classical memory-management policies based on static partitioning or fixed scheduling assume
a fixed resource allocation scheme that disregards dynamic variability and mutual interactions among
subsystems. Such policies fail to capture the nonlinear dependencies among throughput-pipeline char-
acteristics and therefore cannot ensure coherence between local stream optimality and the global effi-
ciency of the system. To adequately describe these dependencies, it is necessary to move from heuristic
or empirical techniques toward a rigorous mathematical formalization of the optimization problem that
explicitly accounts for the multi-objective nature of data-exchange processes. Within this framework,
we consider a memory-management policy parameter vector x € X, for which a vector-valued objective
function is defined as follows:

F(x) = (-B(x),L(x), E(x)), €)
which characterizes the trade-off among bandwidth, access stability, and energy efficiency in the hybrid
architecture of the computing system. The solution to this problem is represented by the set of Pareto-
optimal configurations that provide the best balance between performance and energy consumption.
Constructing and analyzing these configurations paves the way for developing adaptive memory man-
agement methods capable of dynamically optimizing pipeline throughput in next-generation heteroge-
neous systems [1—2].

Analysis of recent research and publications
Memory optimization in hybrid CPU-GPU architectures represents one of the key directions in
the evolution of high-performance computing. Contemporary research pays significant attention to Uni-
fied Memory models, which provide a unified address space and automatic data migration between the
CPU and GPU. Such solutions considerably simplify the programming abstraction; however, they re-
main suboptimal from the standpoint of mathematical optimization, as they do not minimize transfer
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latency under variable channel bandwidth conditions. Similarly, NUMA architectures improve spatial
memory locality but fail to account for energy losses and the stochastic nature of inter-node interactions.

Several recent studies have proposed dynamic memory-management strategies based on empir-
ical models of data-block access intensity and temporal load profiling of the computational pipeline.
These approaches partially adapt the memory-allocation policy to the system’s current state; neverthe-
less, their optimization remains predominantly single-objective (focused solely on minimizing either
execution time or energy consumption) without considering the intricate interdependence among the
criteria B(x), L(x), and E (x). Within the field of mathematical optimization, multi-objective evolution-
ary algorithms such as NSGA-II, SPEA2, and MOEA/D have demonstrated substantial progress, provid-
ing effective approximations of Pareto-optimal sets in problems with nonlinear functionals and unknown
derivatives. These methods have been successfully applied to flow scheduling, load balancing, and en-
ergy-efficiency optimization; however, they have not yet been adapted to memory-management models,
where system parameters are determined not only by computational topology but also by the architec-
tural properties of the communication subsystem [3—5].

In parallel, methods such as ADAM, L-BFGS, Gaussian Process Regression, and Radial Basis
Functions are actively advancing, enabling the reconstruction of latent functions of bandwidth and en-
ergy cost from limited experimental datasets. Nonetheless, the scientific literature still lacks a compre-
hensive mathematical framework that integrates temporal, energetic, and throughput characteristics of
memory into a unified multi-objective optimization problem. This methodological gap underscores the
relevance of developing an evolutionary-gradient model of memory management that combines analyt-
ical rigor with practical adaptability in heterogeneous computing environments [6].

Formulation of the study purpose

The purpose of this study is to develop a mathematical model and an algorithmic approach for
solving the multi-objective memory optimization problem in hybrid CPU-GPU architectures. The core
idea lies in constructing an analytical model of the throughput pipeline that formalizes the interdepend-
ence among bandwidth, access latency, and energy expenditure, combined with the application of an
evolutionary-gradient method to identify the set of Pareto-optimal configurations. The proposed ap-
proach aims to minimize the joint energy-time functional cost and to establish a theoretical foundation
for the further development of self-learning memory management policies in hybrid computing systems.

Presenting main material

Consider a hybrid computing architecture in which the central processing unit (CPU) and the
graphics processing unit (GPU) interact through a shared memory hierarchy with limited bandwidth.
The aggregate performance of such a system is determined by the interdependence of three key charac-
teristics:

e data-exchange bandwidth B (x);
e average memory access latency L(x);
e energy cost of operations E (x).

The vector x = (x4, x5, ..., x,) € X defines the configuration space of the memory management
policy. The components x € X may include parameters such as data transfer block size, fraction of data
allocated to the GPU, stream servicing order, synchronization frequency between processors, and the
intensity of DMA operations. The feasible set X is determined by the architectural constraints of the
system:

X ={x e R"|b.(x) < B&ES by (x) < BRES, Tpcre (%) < T, Mgpy (x) < M}, 2)
where BSPY and BSPU denote the maximum bandwidths of the CPU and GPU buses, respectively;
Tpcre(x) represents the average latency of the data exchange channel; Mgp(x) denotes the utilized
volume of GPU memory; and t*, M* correspond to the respective architectural constraints [7].

The problem of optimal memory management is formulated as a multi-objective optimization
task:

minF (x) = (-B(x), L(x), E(x)), 3)
X

where the vector objective function F (x) describes the coherent coexistence of three conflicting criteria:
bandwidth, access latency, and energy consumption.
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To ensure the mathematical correctness of the problem formulation, we introduce the following
analytical assumptions [8]:
1. The functions B(x), L(x), and E (x) are defined on a closed set X ¢ R"™ and are continuous and
differentiable for almost all x € X.

. ... 0B dL 0E .
2. For each component x; € X of the parameter vector, the partial derivatives Fyiev and 5. exist
i i i

and are continuous. The signs of these derivatives characterize the physical direction of influ-

ence:
o

0}6,:
oL

axi
0E

Ox;
consumption.

Each parameter exerts a consistent directional effect on the objective functions, which ensures

the validity of sensitivity analysis and the reliability of gradient-based approximations.

3. For any two configurations x;, x, € X, there exists a constant y > 0 such that
| B(x1) —B(xz) | +1 L(x1) —L(x2) | 1 E(xy) —E() ISy X1 —x2 I,

which establishes the Lipschitz continuity of the vector function and guarantees the stability of

the functional as well as the convergence of numerical optimization methods with bounded error.

The solution set of problem (3) is defined as the set of Pareto-optimal vectors:

X*={xeX|dy e X:F(y) < F(x)}, (4)
where the relation F(y) < F(x) indicates that the vector F(y) is no worse than F (x) with respect to all
criteria and strictly better in at least one, i.e., F;(y) < F;(x),Vi € {1,...,m},3j: F;(y) < F;(x).

Thus, the formulation (3)—(4) defines a formal space of multi-objective optimization within
which the subsequent analysis focuses on two interrelated problems. First, an analytical model of the
throughput pipeline is constructed to capture the dependencies among bandwidth, access latency, and
energy expenditure. Second, an evolutionary-gradient algorithm is developed to identify the set of Pa-
reto-optimal configurations, ensuring guaranteed convergence and controlled approximation error. This
approach establishes a mathematical foundation for designing coherent memory management policies
in hybrid CPU-GPU systems.

> (: parameters that increase the intensity of parallel computations;
> 0: parameters that increase the intensity or depth of memory request queues;

> 0: parameters that increase computational intensity and, consequently, energy

Throughput Model

The throughput pipeline of a hybrid CPU-GPU architecture can be interpreted as a sequence of
interdependent stages of data exchange and processing that together form a unified flow within the
memory system. In the general case, three primary stages are considered:

a) Loading stage, involving data transfer from main memory to CPU cache subsystems, which
determines the initial stream formation rate;

b) Transportation stage, representing data migration between the CPU and GPU via high-speed
interfaces such as PCle or NVLink, ensuring spatial coordination of subsystems;

c¢) Computational stage, encompassing execution of computations and writing of results to GPU
memory, thereby completing the throughput pipeline cycle.

This formulation reflects the physical structure of the process, in which the throughput of each
stage serves as a local characteristic, while their coherence determines the overall efficiency of the sys-
tem [9—11].

Let t;(x) denote the average processing time per data unit at the i-th stage; then, the total time
for one data packet to pass through the pipeline is given by:

T(x) =i, ti(0), (%)
and the effective throughput is determined by the flow conservation law: B(x) = % where V(x) de-
notes the average volume of data passing through the pipeline within a single operating cycle and is
defined as a function of the memory management policy parameters x € X.

Based on the axioms of dataflow theory and the continuous pipeline model, the equivalent
throughput of a sequential system of channels in the steady-state regime is given by the relation:
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where b, (x) denotes the data exchange rate between the CPU and main memory; by, (x) represents the
bandwidth of the PCle or NVLink channel; and by (x) is the effective access rate to GPU memory.

Each of the functions b;(x) increases monotonically with respect to the parameters defining the degree

of computational parallelism; however, its value is limited by the hardware capabilities of the corre-

sponding channel. For analytical convenience, we introduce the normalized rates b;(x) = 5 \which

max?
b;

belong to the interval b;(x) € [0,1].
The average memory access latency L(x) is determined according to Little’s theorem for open
queuing systems:

Q)

L) =22, ()
where Q(x) denotes the average number of active requests within the system, and A(x) represents the
service rate of these requests.

For the numerical implementation of equation (7), we introduce an approximate functional de-

pendence of the following form:

_  qcpu(®) depu(x)

where qcpy(x) and ggpy(x) denote the average queue lengths of requests, and the coefficients «, and
a4 define the relative weighting of each channel.

Equation (8) ensures the analytical smoothness of the function L(x) while preserving its physi-
cal interpretability, as it directly links latency to the temporal characteristics of individual system com-
ponents. The energy cost of operations E'(x) can be determined through the integral power balance:

E(x) = f(;r(x)(PCPU(x: t) + Pgpy(x,t) + Pyys(x, t)) dt. 9)

Under the assumption of a quasi-stationary power consumption regime, in which variations in
power during a data transfer cycle are negligible, the energy balance integral (9) can be reduced to the
following analytical form:

E(x) = Pepy () Tepy (%) + Popy (0) Tepy (X) + Prys (1) Tpere (%), (10)
where Tepy(x) and Tgpy(x) denote the fractions of active operation time of the devices within a com-
plete execution cycle.

It has been established that the energy consumption of the graphics accelerator exhibits a quad-
ratic dependence on the GPU core clock frequency fgpy(x), which is consistent with well-known mod-
els of energy dynamics in semiconductor devices. Considering this, it is reasonable to adopt the follow-
ing approximation:

Popy(x) = Py + Bfpy(x)?, (11)

where £ is a parameter characterizing the energy sensitivity of the computational subsystem.
For a compact representation of the interrelations among the system’s key characteristics, the
generalized model of the throughput pipeline can be expressed as a system of functional dependencies:

B(x) = P (be (), by (), by ()
L(x) = lpL(QCPU(x)rCIGPU(x):B(x)); (12)

E(X) = l/)E (PCPU (X), PGPU(x)I Pbus(x)r T(X)),

where Yz (+) is the bandwidth aggregation operator, which maps the local transfer rates of subsystems
(the CPU cache, PCle/NVLink channel, and GPU memory) into the system’s overall effective band-
width B(x); ¥, (+) is the latency operator, defining the dependence of the average access time L(x) on
the request-queuing parameters qcpy(x), qgpu(x), and the actual bandwidth B(x); and ¥z (-) is the
energy-balance operator, establishing the functional relationship among the power levels of active com-
ponents Pepy(x), Popu(x), Pyys(x) and the duration of the computational cycle T (x).

The functions ¥;(-), i € {B, L, E}, are defined on the admissible parameter set X c R™ and sat-
isfy the following properties:
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a) Continuity and differentiability: for all x € X, there exist partial derivatives %, ensuring
smoothness and enabling local gradient analysis;

b) Monotonicity: the function yg () is non-decreasing with respect to b, (x), byys (x), and by (x);
the function ¥, (-) is decreasing with respect to B(x) and increasing with respect to gcpy(x) and
qgpu(x); the function ¥ (+) is monotonically increasing with respect to the power variables Pcpy (%),
PGPU(x)a and Pbus(x);

c) Lipschitz continuity: there exists a constant K > 0 such that

1¥(x1) = P ()l < Kllxg — x5, Vxq, %, € X,

which guarantees the model’s stability under small parameter perturbations.

The generalized representation (12) provides a mathematically consistent formalization of the
interdependent relationships among CPU-GPU memory subsystems and forms the foundation for sub-
sequent multi-objective optimization.

Methodology of Multi-Objective Optimization

The solution of problem (3)—(4) for the vector function (1) is based on combining global and
local mechanisms for searching Pareto-optimal configurations of the memory management policy. Since
the functions B(x), L(x), and E (x) are defined by the operators g, 1;, Y in (12) and are continuous
and Lipschitz-continuous, the set X* c X exists and is closed in the sense of e-dominance. To approxi-
mate this set, an evolutionary-gradient approach is proposed that integrates global exploration of the
Pareto front using NSGA-I1 or MOEA/D algorithms with local refinement of solutions through gradient-
based methods such as ADAM or L-BFGS. This hybrid strategy ensures a balance between exploration
of the decision space X and exploitation of the local neighborhoods of obtained solutions [12-14].

Let fi(x) =—-B(x), fa(x)=L(x), f:(x)=E), and A= (13,1;,13) € A3,
where A; = {1; = 0, }; A; = 1} is the weight vector. The local scalarization of the vector optimization
problem is defined by the functional:

filx)-m;
L(x) = X1 A E— (13)
where m;, s; > 0 are the current centering and scaling parameters of the components with respect to the

Pareto criterion.
A point x* € X is considered e-stationary in the Pareto sense if:

o, 2) = [|x* = Iy (v = 2f, A7 LE2)

Si

|2 <e¢, (14)

where [[x(-) denotes the orthogonal projection onto the feasible set.

Criterion (14) is equivalent to satisfying the Karush-Kuhn-Tucker conditions for multi-objective
optimization under small £, and ensures local equilibrium among the criteria B, L, and E.. At the global
stage, the NSGA-II or MOEA/D algorithm generates a set P, c X that approximates the front of non-
dominated solutions. For each representative point x € P;, the corresponding weight vector A(x) is de-
termined, after which local refinement of the minimum L, (x) in (13) is performed. When the analytical
gradients Vf;(x) are unavailable, they are approximated using surrogate models based on Gaussian Pro-
cess Regression (GPR):

Vfi(x) = Vi (%), (15)
where y; (x) denotes the mean function of the Gaussian Process Regression (GPR).

Or Radial Basis Functions (RBF):

7o) = 0y (lx - gll, o). (16)
2
where ¢(+) is the Radial Basis Function (RBF) basis, and w;;, ¢; are the interpolation parameters.

At each iteration, local refinement of the memory management policy parameters (the vector x,
which defines the data transfer block size, GPU data fraction, synchronization frequency, and other
variables of model (2)) is performed. This refinement follows a quasi-discrete dynamic process:

204D = [T(x® -y T, 47 fi(x ), (17)
where 1, > 0 is an adaptive step-size coefficient that regulates the rate of configuration change at the
k-th iteration of the local algorithm.
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Algorithmically, this corresponds to minimizing the scalarized functional (13) in the direction
of a compromise reduction of latency and energy consumption without degrading bandwidth. The coef-
ficient n,is updated according to the ADAM rules (with first- and second-moment estimates) or via the
quasi-Newton L-BFGS scheme. In physical terms, this process can be interpreted as the gradual align-
ment of flow rates within the throughput pipeline, where the memory-allocation parameters adaptively
shift toward an equilibrium regime with minimal energy loss.

The evolutionary-gradient process of multi-objective optimization terminates once convergence
is achieved according to either criterion (18) or (19). After each global-local iteration, an archive of non-
dominated solutions A; < X is formed, accumulating all configurations not e-dominated by any other el-
ement of the current population. This archive serves as the basis for monitoring algorithmic convergence.

The optimization procedure is considered complete if at least one of the following conditions is
satisfied:

j <
1&% r/lnelg D(x, 1) < g, (18)
or
dy (A, Ar_1) < €y, (19)

where dy (A, A¢—1) denotes the distance metric between successive archives A;.

Condition (18) reflects the attainment of gradient equilibrium among the criteria, whereas con-
dition (19) indicates the stabilization of the Pareto front geometry in the (B, L, E) space. If neither con-
dition (18) nor (19) is satisfied, the evolutionary population P; is updated, and the estimates of the func-
tions B(x), L(x), and E (x) are refined according to the operators Yz, ¥, 5.

The proposed evolutionary-gradient approach provides a unified and theoretically consistent
mechanism for optimizing bandwidth, latency, and energy characteristics in hybrid CPU-GPU systems
by integrating global evolutionary adaptation with local differential correction.

Experimental Verification of the Method

To evaluate the effectiveness of the proposed multi-objective memory optimization method, a
series of experiments was conducted in the Google Colab environment on a representative hybrid CPU-
GPU system consisting of a dual-core Intel Xeon CPU @ 2.20 GHz (4 threads) and an NVIDIA Tesla
T4 graphics accelerator (40 SM modules, Compute Capability 7.5, 12.67 GB RAM). The runtime envi-
ronment was based on Linux 6.6.97+ with Python 3.12.11, employing the NumPy 2.0.2 and CuPy 13.3.0
libraries.

As the test problem, a two-dimensional five-point stencil scheme (commonly used in numerical
methods for solving partial differential equations) was selected. For different permissible GPU memory
capacities M, € {128,256,512} MiB, optimal scheduling policies were sought for distributing com-
putations between the CPU and GPU, considering latency L5, throughput B, and energy cost E. This
setup enabled assessment of how dynamic control over chunk size, thread count, and GPU workload
fraction influences the achievable trade-off among performance, latency, and memory utilization.

Fig. 1 presents the energy-throughput characteristics of the CPU-GPU system for different
memory capacity limits M,,,, € {128,256,512} MiB, comparing baseline memory management poli-
cies with the proposed Pareto-optimal approach.

From the analysis of the dependencies in Fig. 1, it is evident that for all M,,,, regimes, the pro-
posed evolutionary-gradient policy forms a Pareto front that surpasses the baseline configurations in
terms of bandwidth while maintaining equal or lower energy cost. For M,,,, = 128 MiB, a maximum
throughput of approximately B,,,, = 8.6 GB/s was achieved at an energy consumption of E = 1.0,
whereas the best baseline configuration (GPU-only) achievedonly B = 4.2 GB/sat E ~ 2.1 J. A similar
trend is observed for larger memory capacities: at M,,,,, = 512 MiB, Pareto-optimal configurations re-
tain an average 35—45 % improvement in throughput and reduce energy consumption by roughly a
factor of two compared with fixed scheduling schemes.

These results confirm the effectiveness of the proposed approach in minimizing the combined
energy-time cost while scaling the system.

Fig. 2 presents the cumulative distribution functions (CDFs) of data-block processing latency
for three memory constraints M,,,,, € {128,256,512} MiB, comparing the optimized policy with base-
line static configurations.
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Fig. 2. Per-chunk latency distribution for hybrid CPU-GPU memory policies
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Analysis of the cumulative distribution curves (Fig. 2) reveals a systematic reduction in latency
for the optimized configuration obtained via the evolutionary-gradient method. Across all M., regimes,
the “Best” CDF curve exhibits a pronounced leftward shift, indicating shorter system response times
while maintaining high throughput. Specifically, for M,,,, = 128 MiB, the 95th percentile latency is
approximately 0.34 ms, whereas for the Static-50/50 and Fixed-schedule schemes, the corresponding
values are 0.46 msand 0.49 ms, respectively. At M,,,, = 256 MiB, the optimized model further reduces
latency to 0.27 ms, confirming improved synchronization between CPU and GPU memory flows and
efficient utilization of the PCle channel. For M,,,, = 512 MiB, the distribution stabilizes, with the curve
shape indicating reduced latency variance and a higher degree of system predictability.

Thus, the optimized policy not only achieves lower average latencies but also enhances the de-
terminism of the throughput pipeline’s temporal characteristics, which is essential for ensuring the sta-
bility of hybrid computing systems.

Fig. 3 presents a comparison of data-block processing latency distributions (boxplots) for three
memory capacities M., € {128,256,512} MiB, illustrating the variation in timing delays under differ-
ent memory management policies.

128 MiB 256 MiB

o
»
x
A
o
W
o

—

o

>

o
A

o
w
N

—
—

O,
N
(o)

Per-chunk latency [ms]
o (=]
w w
o v
Per-chunk latency [ms]
o
w
o

©
N
)

025 &' 1
Best Static-50/50 Fixed-schedule Best Static-50/50 Fixed-schedule

512 MiB
0.50 - ==

== ]

0.35 1 —‘V

0.30 -

o
)
'S

o
B
«

Per-chunk latency [ms]
|
I

1L
Best Static-50/50 Fixed-schedule

Fig. 3. Statistical distribution of per-chunk latency for hybrid memory scheduling

Analysis of the boxplot diagrams (Fig. 3) demonstrates a significant reduction in both median
latency and variance when applying the optimized policy compared to baseline schemes. For M,,,, =
128 MiB, the average latency of the optimal configuration is approximately 0.44 ms with minimal dis-
persion, whereas for the Static-50/50 and Fixed-schedule schemes, the corresponding medians decrease to
0.26 ms and 0.31 ms, respectively, though with substantially wider interquartile ranges, indicating insta-
bility in temporal response. At M,,,, = 256 MiB, the optimized model maintains a compact latency dis-
tribution within 0.28—0.33 ms, while static policies exhibit deviations of up to 0.1 ms. For M., =
512 MiB, the fixed-schedule mode shows the lowest median latency (~0.31 ms) but with large variability,
whereas the optimal configuration achieves stable latency near 0.45 mswithout pronounced fluctuations.

Hence, the optimization policy produces a more predictable and robust temporal behavior of the
memory pipeline, which is critically important for tasks with strict real-time constraints.
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Fig. 4 illustrates the trade-off between throughput and peak device memory utilization for dif-
ferent capacities M,,,,, € {128,256,512} MiB; the marker size is proportional to the inverse of the en-
ergy cost 1/E.
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Fig. 4. Memory-throughput-energy trade-off in hybrid CPU-GPU systems

The analysis of the obtained dependencies reveals a clear trade-off between system performance
and memory utilization. For M,,,, = 128 MiB, the optimal configurations achieve a throughput of ap-
proximately B = 8.7 GB/s while consuming no more than 2 MiB of peak memory, whereas the baseline
policies are limited to B < 4.5 GB/s even with higher memory usage. At M,,,, = 256 MiB, the Pareto
set shifts rightward, toward regions with B > 9.5 GB/s and peak memory utilization around 20 MiB,
reflecting efficient compensation of increasing load through the expansion of available resources. For
M.« = 512 MiB, throughput saturation is observed at B = 8.2 GB/s, accompanied by a gradual reduc-
tion in energy consumption (indicated by larger marker sizes), signifying the system’s convergence to-
ward an energy-coherent regime.

This behavior confirms the validity of the analytical model (12) and the adequacy of the evolu-
tionary-gradient algorithm for optimizing memory allocation in hybrid architectures.

Conclusions

This study proposes a comprehensive mathematical model for multi-objective memory optimi-
zation in hybrid CPU-GPU architectures, accounting for the interdependence among three key charac-
teristics: bandwidth B(x), latency L(x), and energy cost E(x). The constructed system of operators
Y, Y., Yy formalizes the throughput pipeline, enabling analytical examination and gradient-based ap-
proximation. The proposed evolutionary-gradient method integrates global Pareto-front exploration via
NSGA-1I or MOEA/D with local solution refinement using ADAM and L-BFGS, ensuring convergence
toward an g-approximation of the optimal front.

The results of numerical experiments confirmed the model’s effectiveness: for different memory
capacities M, € {128,256,512} MiB, the approach achieved a 35—45 % increase in throughput and
up to a twofold reduction in energy consumption compared with baseline policies. The optimized
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configurations demonstrated reduced latency in the range of 0.27—0.34 ms and stable temporal re-
sponse, validating the coordinated data flow between CPU and GPU.

Thus, the developed approach enables energy-coherent memory management and provides both
a theoretical and algorithmic foundation for constructing self-learning memory control policies in next-
generation hybrid computing systems.
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