DOI: https://doi.org/10.31319/2519-8106.2(41)2019.185097

MODELING OF THE GASEOUS ENVIRONMENT TO OBTAIN ALUMINIZED COATINGS DOPED WITH CHROMIUM UNDER NON-STATIONARY TEMPERATURE CONDITIONS

Борис Петрович Середа, Олег Павлович Максименко, Олександр Сергійович Гайдаєнко, Дмитро Борисович Середа

Анотація


The purpose of this work is thermodynamic modeling of obtaining alitated coatings doped with chromium under the conditions of self-propagating high-temperature synthesis. Investigation of the mechanism of forming a protective coating on structural materials was carried out using the method of thermodynamic analysis of possible chemical reactions between the components of the system. For this purpose, the interaction of the gas saturated medium formed in the SHS process and the material was calculated. For thermodynamic analysis of the SHS process of forming alitated coatings, we use the universal program of calculation of multicomponent heterogeneous systems TERRA, created on the basis of the ASTRA-4 program under the environment WINDOWS and worked out for high-temperature processes. Unlike traditional methods in chemical thermodynamics, methods of calculating the equilibrium parameters using Gibbs energy, equilibrium constants, and Goldberg and Vage law, the universal program of TERRA thermodynamic calculations is based on the maximum entropy principle for isolated thermodynamics. It is characterized by a maximum of entropy in terms of thermodynamic degrees of freedom, which include concentrations of system components, temperature, pressure.

Ключові слова


chrome; thermodynamics; modeling; synthesis; coatings; aluminum

Повний текст:

PDF (English)

Посилання


Termodinamicheskie svojstva individual'nyh veshchestv: Spravochnoe izdanie v 4-h t. / L. V. Gurvich, I. V. Vejc, V. A. Medvedev i dr. – M: Nauka, 1978.

JANAF Thermochemical Tables (Third Edition). J.Phys. Chem. Ref. Data vol.14 (1985) Suppl. No.1. (см. также NIST Chemistry WebBook: http://webbook.nist.gov).

Edil'baev A.I. Issledovanie vozmozhnosti obezzhelezivaniya margancevyh koncentratov / Vestnik Nacional'noj inzhenernoj akademii RK Almaty., 2008. – № 4. – S. 125–133.

Primenenie EHVM dlya termodinamicheskih raschetov metallurgicheskih processov / Sinyarev G.B., Vatolin N.A.,Trusov B.G., Moiseev R.K. i dr.]. – M.: Nauka, 1982. – 263 р.

Zmij V.I., Ruden'kij S.G Osobennosti vakuumnogo aktivirovannogo diffuzionnogo nasyshcheniya metallov: termodinamika, mekhanizm i kinetika. Metallofizika i novejshie tekhnologii., 1998. – № 10. – Р. 69–75.

Lovshenko F.G., Lovshenko G.F., Hina B.B, Lovshenko 3.M., Lozikov I.A. Termodinamicheskoe modelirovanie geterogennogo vzaimodejstviya pri mekhanicheskom legirovanii v sistemah na osnove medi. Vestnik Belorussko-Rossijskogo universiteta., 2012. № 1(34). Р. 23–35.

Primenenie EHVM dlya termodinamicheskih raschetov metallurgicheskih processov / G. B. Sinya-r v [i dr.]. – M.: Nauka, 1982. – 264 р.

Mason, P., Mignanelli M. Modeling thermodynamic processe. Advanced Materialsand Processes., 1998. Vol. 153, №. 4. P. 21–24.

Shiryaev, A. Thermodynamics of SIIS processes: An advanced approach / A. Shiryaev // International Journal of' SHS. 1995. № 4. P. 351–362.

Barin, I., O. Knacke, Kubaschevski 0. Thermoeheinical Properties of Inorganic Substances. Supplement. – Berlin: Springer-Verlag, 1977. – 243 p.

Termodinamicheskie svojstva neorganicheskih, veshchestv: spravochnik / U.D. Veryatin [i dr.].: Atomizdat, 1965. – 460 р.

Termicheskie konstanty veshchestv / Pod red. V.II. Glushko M. VINITI, 1979 – 197 р.

Termodinamicheskie svojstva individual'nyh soedinenij / Pod red. V. II. Glushko. – M.: Nauka, 1982. – Т. Barin, I. Thermochemical Data of Pure Substances. Third Edition. – New York: VCH Publishers, Inc., 1995. – 2003 p.

Sereda B., Kryglyak I., Sereda D. Production of highly effective SHS coatings operating in oxidizing and corrosive environments Material science and technology – 2017. Pittsburgh. Pennsylvania USA. 2017. P.424–429

Sereda B., Kovalenko A., Kryglyak I., Sereda D. Simulation and modeling of metallurgical phenomena produced on pressing in SHS-condition. Material science and technology – 2017. Pittsburgh. Pennsylvania USA. 2017. P.727–732

Sereda B., Sereda D. Establishment of the relationship between the microstructure characteristics and the heat resistance of silicate coatings obtained under SHS conditions. Material science and technology – 2017. Pittsburgh. Pennsylvania USA. 2017. P.412–416

Sereda B., Sereda D. Corrosion Resistance and Mechanical Properties Zinc Coating Sheet Steels, Received in Conditions of Self-propagating High Temperature Synthesisю. Material science and technology – 2016. Salt Lake City, Utah USA 2016. P.825–829.

Sereda B., Sereda D. Development of Protective Coatings Formulations Based on Boron for Units Operating at High Temperatures in Metallurgy. Material science and technology – 2016. Salt Lake City, Utah USA 2016. P.931–934.

Sereda B., Sereda D. Modeling deformation in material processing and laws of phasic by SHS pressing intermetallics alloys. Material science and technology. Columbus. Ohio, USA 2015. P.611–617.

Sereda B., Sereda D. Advanced Chromoaluminizing Coatings for Wear and Heat-resistance on Composite Materials under SHS. Material science and technology – 2015. Columbus, OH, USA. 1821p, P.229–232.




Текст

ISSN 2519-8106 (Print), eISSN 2519-8114 (Online)