МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ СТІЙКОСТІ ПЕРВИННИХ ФАЗ ПРИ КРИСТАЛІЗАЦІЇ СПЛАВУ Fe-C-Mn-Si-Ti-Al-N
DOI:
https://doi.org/10.31319/2519-8106.2(45)2021.246965Ключові слова:
сталь, структурні компоненти, оксиди алюмінію, термодинамічні функціїАнотація
Після лиття в структурі сплавів Fe-C-Mn-Si-Ti-Al-N відбувається утворення дрібнодисперсних включень оксидів алюмінію Al2O3 та(Al, Ti)2(O, N)3. Порівняння енергій Гіббса фаз Al2O3 та (Al, Ti)2(O, N)3, показало, що більш енергетично вигідне в сплаві утворення оксиду (Al, Ti)2(O, N)3, що узгоджується з експериментальними даними. Показано, що фаза Al2O3 термодинамічно стійка на всьому температурному інтервалі, а фаза (Al, Ti)2(O, N)3 втрачає свою термодинамічну стійкість при температурі 1423 К.
Посилання
Marker M. C.J., Duarte L. I., Leinenbach C., Richter K.W. Characterization of the Fe-rich corner of Al-Fe-Si-Ti. Intermetallics. 2013. № 39. С. 38–49.
Hidayat T., ShishinD., Jak E., Decterov S. Thermodynamic Reevaluation of the Fe-O System. Calphad. 2015. № 48. Р. 131–144.
Tu Y., Huang L., Zhang Q., Zhou X., Jiang J. Effect of Si on the partitioning of Mn between cementite and ferrite, Materials Science and Technology. 2018. № 34. Р. 780–785.
Caron M., Gagnon G., Fortin V., Currie J. F., Ouellet L., Tremblay Y., Biberger M., Reynolds R. Calculation of a Al–Ti–O–N quaternary isotherm diagram for the prediction of stable phases in TiN/Al alloy contact metallization. Journal of Applied Physics. 1996. Vol. 79. Р. 4468–4478.
Parusov E.V., Lutsenko V.A., ChuikoI. N., Parusov O.V. Influence of chemical composition and cooling parameters on kinetics of austenite decomposition in high-carbon steels. Chernye Metally. 2020. № 9. P. 39–44.
Lutsenko V.A., Parusov E.V., Golubenko T.N., Lutsenko O.V. Energy effective mode of sof-tening heat treatment of silicon-manganese steel. Chernye Metally. 2019. № 11. P. 31–35.
Babachenko A.I., Togobitskaya D.N., Kononenko A.A., Snigura I.R., Kuksa O.V. Jus-tification for Choosing Alloying and Micro-Alloying Elements to Improve the Mechanical Properties of Railway Wheels. Steel in Translation. 2020. № 50(11). P. 815 – 8217.
Babachenko A.I., Kononenko A.A. Influence of the chemical composition and structural state on tough properties of steel for railway wheels. Металофізики та новітні технології. 2008. № 30. P. 227–234.
Jak E., Hayes P.C. Thermodynamic Modelling of the Coal Ash Systems in BlackCoal Utilisa-tion (a New FACT Database of the SiO2-Al2O3-CaO-FeO-Fe2O3 System and the Effects of MgO, K2O and Na2O on Liquidus), in Proc.-Annu. Int. Pittsburgh Coal Conf. 2001. Vol. 18. Р. 129–141.
Ciaś, A., Chemical Reactions During Sintering of Fe-Cr-Mn-Si-Ni-Mo-C Steels with Special Reference ti Processing in Semi-closed Containers. Science of Sintering. 2015. Vol. 47, No. 1.Р. 61–69.
Prostakova V., Shishin D., Shevchenko M., Jak E. Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry. 2019. Vol. 67. Р. 101680(7).
Jung I., Eriksson G., Wu P., Pelton A. Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 SystemandIts Applications to the Fe–Al–Ti–O Inclusion Diagram. ISIJ International. 2009. Vol. 49(9). P. 1290–1297.
Furukawar G.T., Douglas T.B., McCoskeyr R.E., Ginnings D.C. Thermal Properties of Aluminum Oxide From 0° to 1,200° K. Journal of Research of the Nationa lBureau of Standards. 1956. 57(2). Р. 2694–2700.
Bale C.W., Belisle E.P., Chartrand S.A., Decterov G., Eriksson A.E., Gheribi K., Hack I.H., Jung Y.B., Kang J., Melancon A.D., Pelton S., Petersen C., Robelin J., Sangster P., Spencer M.A. Fact Sage the chemicalss of ware and databases, 2010-2016. Calphad. 2016. Vol. 54. Р. 35–53.
Decterov S.A. Termodynamic database for multicomponent oxide system. Chimica Techno Acta. 2018. №5(1). P. 16–48.
Filonenko N.Yu.. Structural state and thermodynamic stability of Al-Cu alloys. International Journal of Modern Physics B. 2020. Vol. 34, No. 8. 2050057 (11 pages).
Filonenko N.Yu., Galdina O.M., Kochenov A.V. Thermodynamic Functions of Fe3B Borides. Physics and Chemistry of Solid State. 2019. № 20(2). P. 139–143.
Dinsdale T.A. SGTE dataforpureelements.Calphad.1991. №15(4). Р. 317–425.
Mao H., Selleby M., Sundman, B. Phase Equilibria and Thermodynamics in the Al2O3–SiO2 System-Modeling of Mulliteand Liquid. J. Am. Ceram. Soc. 2005. № 88(9). Р. 2544–2551.
Chen T., Gao M., Tong Y. Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti. Powder Compacts Materials. 2018. № 11(138).
Р. 2544–2551.
Escribano V. S., Amores J. M. G., Finocchio E., Daturib M., Busca G. Characterization of a-(Fe,Al),O, Solid-solution Powders. J. Mater. Chem. 1995. Vol. 5(ll). Р. 1943–1951.
Базаров И. З. Термодинамика. М.: Высшая школа, 1991 – 376 с.
Erba A., Mau J., Demichelisc R., Dovesia R. Assessing thermochemical properties of materials through hinitio quantum-mechanical methods: thecaseofa-Al2O3. Phys. Chem. Chem. Phys. 2015. Vol. 17. Р. 11670–11677.
Filonenko N.Yu.,Galdina O.M. Liquidus surface and spinodal of Fe-B-C alloys. East European Journal of Physics. 2020. № 1. Р. 75–82.
Marker M C.J., Duarte L.I.., Leinenbach C., Richter K.W. (2013). Characterization of the
Fe-rich corner of Al-Fe-Si-Ti. Intermetallics, 39, 38–49. [in English]
Hidayat T., Shishin D., Jak E., Decterov S. (2015). Thermodynamic Reevaluation of the Fe-O System. Calphad, 48, 131–144. [in English]
Tu Y., Huang L., Zhang Q., Zhou X., Jiang J. (2018). Effect of Sion the partitioning of Mn between cementite and ferrite. Materials Scienceand Technology. 34(7), 780–785. [in English]
Caron M., Gagnon G.,Fortin V., Currie J. F., Ouellet L., Tremblay Y., Biberger M., Rey-nolds R. (1996). Calculation of a Al–Ti–O–N quaternary isotherm diagram for the prediction of stable phases in TiN/Al alloy contact metallization. Journal of Applied Physics, 79, 4468–4478. [in English]
Parusov E. V., Lutsenko V. A., Chuiko I. N., Parusov O. V. (2020). Influence of chemical composition and cooling parameters on kinetics of austenite decomposition in high-carbon steels.. Chernye Metally, 9, Р. 39–44. [in English]
Lutsenko V.A., Parusov E.V., Golubenko T.N., Lutsenko O.V. (2019). Energy effective mode of softening heat treatment of silicon-manganese steel. Chernye Metally,. 11, 31–35. [in English]
Babachenko A.I., Togobitskaya D.N., Kononenko A.A., Snigura I.R., Kuksa O.V. (2020). Justification for Choosing Alloying and Micro-Alloying Elements to Improve the Mechanical Properties of Railway Wheels. Steelin Translation, 50(11), 815–817. [in English]
Babachenko A.I., Kononenko A.A. (2008.). Influence of the chemical composition and structural state on tough properties of steel for railway wheels. Metallofizika i Noveishie Tekhnologii – Metalphysics and the latest technologies, 30, 227–234. [in English]
Jak E., Hayes P.C. (2001). Thermodynamic Modelling of the Coal Ash Systems in BlackCoal Utilisation (a New FACT Database of the SiO2-Al2O3-CaO-FeO-Fe2O3 System and the Effects of MgO, K2O and Na2O on Liquidus), in Proc.-Annu. Int. Pittsburgh Coal Conf. 2001. Vol. 18. Р. 129–141. [in English]
Ciaś, A. (2015). Chemical Reactions During Sintering of Fe-Cr-Mn-Si-Ni-Mo-C Steels with Special Reference ti Processing in Semi-closed Containers. Science of Sintering, 47(1), 61–69. [in English]
Prostakova V., Shishin D., Shevchenko M., Jak E. (2019). Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 67, 101680(7). [in English]
JungI., ErikssonG., Wu,P.,PeltonA. (2009). Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 SystemandIts Applications to the Fe–Al–Ti–O Inclusion Diagram. ISIJ International, 49(9), 1290–1297. [in English]
Furukawar G.T., Douglas T.B., McCoskeyr R.E., Ginnings D.C (1956). Thermal Properties of Aluminum Oxide From 0° to 1,200° K. Journal of Research of the National Bureau of Standards, 57(2), 2694–2700. [in English]
Bale C.W., Belisle E.P., Chartrand S.A., Decterov G., Eriksson A.E., Gheribi K., Hack I.H., Jung Y.B., Kang J., Melancon A.D., Pelton S., Petersen C., Robelin J., Sangster P., Spencer M.A. (2016). Fact Sage the chemicalss of ware and databases, 2010-2016. Calphad, 54, 35–53. [in English]
Decterov S.A. (2018). Termodynamic database for multicomponent oxide system Chimica Techno Acta, 5(1), 16-48. [in English]
Filonenko N.Yu.. (2020). Structural state and thermodynamic stability of Al-Cu alloys. International Journal of Modern Physics B, 34(8), 2050057 (11). [in English]
Filonenko N. Yu., Galdina O.M., Kochenov A.V. (2019). Thermodynamic Functions of Fe3B Borides. Physics and Chemistry of Solid State, 20(2), 139–143. [in English]
Dinsdale T.A. (1991). SGTE dataforpureelements. Calphad, 15(4), 317–425. [in English]
Mao H. ,Selleby M., Sundman B. (2005). Phase Equilibria and Thermodynamics in the Al2O3–SiO2 System-Modeling of Mulliteand Liquid. J. Am. Ceram. Soc, 88 (9), 2544–2551. [in English]
Chen T., Gao M., Tong Y. (2018 Effects of Alloying Elements on the Formation of Core-Shell-Structured Reinforcing Particles during Heating of Al–Ti. Powder Compacts Materials, 11(138), 2544–2551. [in English]
Escribano V.S., Amores J. M. G., Finocchio E., Daturib M., Busca G. (1995). Characterization of a-(Fe,Al),O, Solid-solution Powders. J. Mater. Chem, 5(ll), 1943-1951. [in English]
Bazarov I.P. (1991). Termodinamika [Thermodynamics]. M: Vichashkola [In Russian]
Erba A., Mau J., Demichelisc R., Dovesia R. (2015). Assessing thermochemical properties of materials through hinitio quantum-mechanical methods: thecaseofa-Al2O3.. Phys. Chem. Chem. Phys, 17, 11670–11677. [in English]
Filonenko N.Yu., Galdina O.M. (2020). Liquidus surface and spinodal of Fe-B-C alloys. East European Journal of Physics, 1, 75–82. [in English]
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
a. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
b. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
c. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).