MODELING OF STRUCTURE FORMATION PROCESS IN INTERMETALLIC NiAl ALLOYS DURING THERMOCHEMICAL PRESSING

Автор(и)

  • Борис Петрович Середа Дніпровський державний технічний університет, Ukraine
  • Юрій Олександрович Бєлоконь Запорожский национальный университет, Ukraine
  • Дмитро Борисович Середа Дніпровський державний технічний університет, Ukraine

DOI:

https://doi.org/10.31319/2519-8106.1(42)2020.206936

Ключові слова:

mathematical model, thermochemical pressing, intermetallic alloys, structure, grain size

Анотація

Mathematical model aimed at obtaining NiAl alloys with a given structure and properties is proposed and implemented, based on the use of data on the features of the physical modeling of the thermochemical pressing process. For a mathematical description of the process of extrusion of a high-temperature synthesis product, it is necessary to determine a system of equations that takes into account the distribution of the thermo-kinetic and rheological properties of the synthesis product in a mold and caliber. High-temperature synthesis of intermetallic compound NiAl in a powder mixture of pure elements in the conditions of thermochemical pressing allows to obtain an intermetallic alloy with an average grain size of ~ 40—50 microns.

Посилання

Zabelin, I.V. and Protsenko, V.M. (2003). Status of non-ferrous metal industry in Ukraine and problems in its development. Metallurgicheskaya i Gornorudnaya Promyshlennost, 4, 75–78.

Belokon, Y.O., Oginsky J.K, Belokon K.V and Zherebtsov O.A (2017). Teoretychne ta eksperymentalne vyznachennia enerhii aktyvatsii utvorennia intermetalidiv u systemakh nikel-aliuminii ta tytan-aliuminii [Theoretical and experimental determination of the activation energy of the formation of intermetallides in nickel-aluminum and titanium-aluminum systems]. Metalurhiia. – Metallurgy, 1(37), 81–85 [in Ukraine].

Bokhonov B. B. and Korchagin M. A. (2001). Insitu investigation of the formation of nickel silicides during interaction of single-crystalline and amorphous silicon with nickel. J. Alloys and Compounds, 319, 187–195.

Kovalev O.B. and Neronov V.A. (2004). Metallochemical analysis of the reaction in a mixture of nickel and aluminum powders. Combustion, Explosion, and Shock Waves, 40, 2, 172–179.

Sereda B.P., Palekhova I.V., Belokon Y.A. and Sereda D.B. (2014). Poluchenie intermetallidnyih soedineniy i pokryitiy pri nestatsionarnyih temperaturnyih usloviyah [Production of intermetallic compounds and coatings under non-stationary temperature conditions]. Novyie materialyi i tehnologii v metallurgii i mashinostroenii. – New materials and technologies in metallurgy and mechanical engineering, 2, 67–71 [in Russian].

Sereda B.P., Kozhemyakin G.B, Savela K.V. and Belokon Y.A. (2009). Issledovanie vliyaniya fazovogo sostava Ni-Al splavov na fiziko-himicheskie svoystva skeletnyih nikelevyih katalizatorov [Investigation of the effect of the phase composition of Ni-Al alloys on the physicochemical properties of skeletal nickel catalysts]. Metalurhiia. – Metallurgy, 20, 112–117 [in Russian].

Shi, Q., Qin, B., Feng, P., Ran, H., Song, B., Wang J. and Ge, Y. (2015). Synthesis, microstructure and properties of TiAl porous intermetallic compounds prepared by thermal explosion reaction. Royal Society of Chemistry, 5, 46339–46347.

Sereda B.P., Kruglyak I.V., Belokon Yu.A. and Sereda D.B. (2015). Production of chromo-catalyzed coatings on carbon materials in self-propagating high-temperature synthesis. Construction, materials science, mechanical engineering, 1, 48, 296–300.

Sereda B., Sheyko S., Kruglyak I. and Belokon’ Y. (2008). Application of activation of substrate by aluminium and copper for increase of adhesive durability of sheetings received in self-propagating high-temperature synthesis conditions. 10th International Conference on the Science and Technology of Adhesion and Adhesives. Oxford, UK, 437–439.

Lapshin, O. V. and Ovcharenko V. E. (1996). A mathematical model of high-temperature synthesis of nickel aluminide Ni3Al by thermal shock of a powder mixture of pure elements. Combustion, Expplosion and Shock Waves, 3, 299–305.

Lapshin, O. V. and Ovcharenko, V. E. (1996). Mathematical model of high-temperature synthesis of the intermetallic compound Ni3Al at the ignition stage. Fizika Goreniya i Vzryva, 32, 68–76.

Belokon K. and Belokon Y. (2018). The study of catalysts based on intermetallic NiAl alloys. Ceramic Transactions, 262, 219–225.

Cheilytko, A.A., Ilin S.V. and Nosov M.A. (2017). Creation of effective metallic thermal insulation constructions. Scientific Bulletin of National Mining University, 6, 103–108.

Beygelzimer, Y.E., Pavlenko, D.V., Synkov, O.S. and Davydenko, O.O. (2019). The efficiency of twist extrusion for compaction of powder materials. Powder Metallurgy and Metal Ceramics, 58(1–2), 7–12.

##submission.downloads##

Опубліковано

2020-06-11

Номер

Розділ

Статті