SIMULATION OF THERMAL PROCESS FOR ULTRA-LOW CARBON STEEL IN THE CONDITIONS OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS

Автор(и)

  • Борис Петрович Середа Дніпровський державний технічний університет, Ukraine
  • Дмитро Борисович Середа Дніпровський державний технічний університет, Ukraine
  • Віталій Іванович Волох Дніпровський державний технічний університет, Ukraine

DOI:

https://doi.org/10.31319/2519-8106.1(42)2020.206958

Ключові слова:

hardness, SHS charge, temperature, special boundaries, wear resistance

Анотація

The mathematical modeling of the thermal process of forming the Armko-iron structure with the purpose of increasing the hardness and choosing the optimal charge composition is considered. Investigation of the mechanism of thermal process formation for ultra-low-alloy steel used the method of thermodynamic analysis of possible reactions between system components. For the thermal process, a universal program for the calculation of multicomponent heterogeneous TERRA systems based on the ASTRA-4 program is used. Unlike traditional methods in chemical thermodynamics, methods of calculating the equilibrium parameters using Gibbs energy, equilibrium constants, and Goldberg and Vage law, the universal program of TERRA thermodynamic calculations is based on the maximum entropy principle for isolated thermodynamics.

Using the methods of mathematical modeling, a rational charge composition was developed, and the shelf life of arco-iron in the furnace was determined with the aim of increasing hardness and durability.

Посилання

Bolshakov V.I., Sukhomlin V.I., & Volokh V.I. (2015). Effect of annealing temperature on the formation of special boundaries in armco-iron. [Temperatus effectus in annealing de profectu formationis metas speciales in Armco ferrum].Dnepropetrovsk: Higher Educational Institution “PGASA” [in Ukrainian].

Sukhomlin V.I., & Volokh V.I. (2009). Effect of normalization duration on the structure of magnetic properties and special boundaries in low-carbon steel [In structuram et ordinationem duratione effectum magneticae proprietates speciales et terminationibus in chalybe]. Science, Society, Education: Topical Issues and Development Prospects - Scientia: Societate Education: Bibliog exitibus et Expectationes Development, 271–276 [in Ukrainian].

Sereda, B.P. (2009). New materials in metallurgy [Novae materiae troporum]. Zaporizhzhia: ZDIA [in Ukrainian].

Sereda B.P. (2008). Metal knowing and thermal processing of black and white metals [Scelerisque processus metallum suos, doctus et nigrum ex albo et metalla]. Zaporizhzhia: ZDIA [in Ukrainian].

Sereda, B.P. (2019). On the surface of the material materials in the minds of the integrated influx of aggressive speeches [De superficies materiam materiae integrated in animo per influxum, seu aggres contionibus]. Kam'yanske: tech. University (DDTU) [in Ukrainian].

Sereda B.P., Kruglyak I.V., Zherebtsov O.A., & Blokon Yu.O. (2009). Squeezing metal with a vise with unsteady temperature minds [Metallo et constrictione animi temperie levis sapienti]. Zaporizhzhia: ZDIA [in Ukrainian].

Sinyarev G.B, Vatalin N.A, Trusov B.G, & Moiseev R.K. et al. (1982). The use of computers for thermodynamic calculations of metallurgical processes [Usus thermodynamic computers per rationes fiunt metallurgical]. Moscow: Nauka [in Russian].

Pupyshev A.A. (2007). Thermodynamic modeling of thermochemical processes in spectral sources [Termodinámico modeling spectris de processibus in fontes thermochemical]. Ekaterinburg: GOU VPO USTU [in Russian].

Merzhanov A.G. (1998). Combustion processes and synthesis of materials [Exinde et combustione processus materiae]. Chernogolovka: ISMAN [in Russian].

Lyakhovich L.S (1981). Chemical – thermal treatment of metals and alloys [Chemical - curatio et scies scelerisque alloys]. Moscow: Metallurgy [in Russian].

##submission.downloads##

Опубліковано

2020-06-11

Номер

Розділ

Статті