DOI: https://doi.org/10.31319/2519-8106.1(42)2020.207010

MATHEMATICAL MODELING OF THE PROCESS OF HEATING A COMPOSITE CONSTRUCTION BY INFRARED RADIATION

Володимир Фаустович Рожковський, Тамара Антонівна Манько, Ольга Петрівна Роменська, Василь Сергійович Зевако

Анотація


In order to clarify the polymerization mode of a carbon fiber cylinder, mathematical modeling of the process of heating a composite structure (cylinder) by infrared radiation using the finite difference method was carried out. Using mathematical modeling, it was found that under given polymerization conditions, when exposed to infrared heating, the carbon fiber cylinder will reach a cured state within 120 minutes. The calculation data are confirmed by an analysis of the degree of polymerization of a carbon fiber fragment cut from a cylinder, cured by infrared heating. The degree of polymerization of carbon fiber using infrared radiation during curing is 95—96 %.

Ключові слова


carbon fiber; cylinder; infrared heating; finite difference method; degree of polymerization

Повний текст:

PDF (English)

Посилання


Mihailin Yu.O. (2008). Konstruktsionnyye polimernyye kompozitsionnyye materialy [Structural Polymer Composite Materials].

Kovalenko V.A., Kondratyev A.V. (2011). Primeneniye polimernykh kompozitsionnykh materialov v izdeliyakh raketno-kosmicheskoy tekhniki kak rezerv povysheniya yeye massovoy i funktsional'noy effektivnosti [The use of polymer composite materials in rocket and space technology products as a reserve for increasing its mass and functional efficiency] // Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, №5 (82), р.14–20

Tsaplin A.I. Bochkarev S.V. (1980). Nestatsionarnoye temperaturnoye pole vrashchayushchegosya stekloplastikovogo tsilindra, obluchennogo parallel'nym elektronnym puchkom [Unsteady temperature field of a rotating fiberglass cylinder irradiated with a parallel electron beam] // Mechanics of composite materials, №2, p. 304–307.

Komkov M.A., Tarasov V.A. (2014). Vliyaniye vyazkosti svyazuyushchego v propitochnoy vanne na poristost' kompozita pri mokrom sposobe namotki [The effect of the viscosity of the binder in the impregnation bath on the porosity of the composite with the wet winding method].

Namitokov K.K., Ovchinnikov S.S., Savvo N.M. Primeneniye (1987) UF i IK izlucheniy v tekhnologii polimerov [UV and IR radiation in polymer technology] // Primeneniye plastmass v stroitel'stve i gorodskom khozyaystve. р. 90–91.

Tsaplin A.I. Bochkarev S.V., Mordvin A.P. (1986) Dinamika elektronno-luchevogo nagreva stekloplastikovogo tsilindra, vrashchayushchegosya na opravke [Dynamics of electron beam heating of a fiberglass cylinder rotating on a mandrel] // Mechanics of Composite Materials, №2, p. 359–361

Manko T.A., Husarova I.A., Romenska O.P. (2019). Ispol'zovaniye infrakrasnogo nagreva pri izgotovlenii izdeliy iz polimernykh kompozitsionnнkh materialov [The use of infrared heating in the manufacture of products from polymer composite materials] // Bulletin of Dnipropetrovsk University. Series: Space rocket technology, № 24/19, р.120–123.

Dzhon G. Perri (1969). Spravochnik inzhenera-fizika [Handbook of a physical engineer], 640 р.

Mukhamadeyev I.G. (2007). Algoritmy vychislitel'noy matematiki. Kurs lektsi [Algorithms of computational mathematics. Lecture course].




Текст

ISSN 2519-8106 (Print), eISSN 2519-8114 (Online)